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PREFACE TO PART III

Parr III of this book deals ma,inly with the
theory of the convergence of series and of
products, and with the applications of that. )
theory to the trigonometrical functions. O

In Chapter XVIIT an elementary aecmjrtt of
convergence of series is given. This 1§\fi)110wed
by a chapter on uniform convergence,” Chapter
XX is chiefly concerned with infinite products
and with Tunctions of a complex Wariable, these
functions being defined by{(means of series of
complex terms. This chapter also includes
some applications of $ha theory of Dirichlet’s
Integrals to tngonpmetncal series. Large col-
lections of examples, with answers, will be found
at the ends ¢f the chapters. A discussion of
the length of a circular arc is contained in an
Appendix <

We 3]'&?8 again to thank Mr. Albert Anderson
' for @s valuable help with proof correction.

3B T. M. M.
| W. A.
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CHAPTER XVII

CONVERGENCE OF SERIES

. ) o K
§ 1. Convergence of Sequences _ '\ .

In Chapter XV, § 9, the condition that a sequence (*uﬂ)
should converge to a limit I was given.

Ezample 1.—If the sequence (u,) converges to ,l\éhow that
the sequence (¢u,}, where ¢ is a constant, converges to el,

If ¢ = 0, choose m 80 large that, if n = m, ~ L] < effe].
Then,ifn = m, | cu, —cl| < e Theresultf 6= 0is abvious.

E.mmple a.—If the sequences (i) d {v,} converge to
! and % respectively, show that the Sequances {(t, + 2.} and
{©.2,) converge to (I + %) and Ik respect_wely .

Choose m, and m, so large thaty if » = My, | g — 1 | < 3¢
and, if n = My, | v, — K| < #e“Then if m is the larger of
¥y a.nd Mg, and if n = m, .:,.v

| (#n +fv}—(£+?s1| "3|u,,~—l|—]—iv —k]l <e
Again, A~
v, — U =(m\'\—‘~n {va —k) + s — 1) + Koy — &),

and each term ©M the R.H.8. tends to zero when n tends to
infinity. Her{ce “the L.H.B. tends to zero, so that FTITN tends_
to k. £

o
38011 me%’(\l?v,,) and (4, /v,) converge to 1jk and ; [k reapectively.
Tl?;&equence (|oa]} converges to| &|. Choose  so large

that, if 5 = m,

(&) [foaf— 11| < 3[R}
’ Then _
[ea) > |R]—31k]=1%]%],
g0 that )
—k 2
T =< <[Epioe kI

345



() THEOREM I.—If the sequence (u,)

348 TRIGONOMETRY [vE. xvoo

But, when » tends to infinity, v, — & tends to zérir ¢ thus
(1/v, — 1/k) tends to zero, or 1/v, tends to 1/k.

The second result then follows from the meconl part of
Example 2.

It may happen that, while s sequence is convergent,
the value of the limit is not known. For such cases new™
tests of convergence, not involving a knowledge of the

Limit., are required, There are three fundamental tg>abs.})f
this kind, given in the three theorems below. The following

~ definitions are required : .

Bounded Sequences— A sequence (u,} is ssiid’ to be
- bounded above if, for all values of n, u, <% “where & is
finite and independent of #. If u, = &3he sequence is
bounded below, A sequence which ig botnded both above
-and below is called a bounded sequencely
Note—A convergent sequence ig“l}eﬁnded.
- Let {%,) be the Sequence, and 1t I be its limit. Then,
. corresponding to any assigned positive number €, an integer
m can be found, such that fﬂé m,

I'ﬂf€.‘<.uﬂ <l+ e

Again, let A be\tile greatest and B the least of the
numbers 1, u,, (s Uy, Then, if M is the greater of
Aand 4 ¢, andvn the lesser of B and I — ¢,

N MR S M
for all vahies of 5,
Mgﬂ'@&onw ;S’egue:nce&.——lf, for all values of Ty Uy 2 U,
_ thgg}iuence {2,) is called g monotonic incredsing sequence.
I \for all values of 7, Yni1 = U,, the sequence ig monotonic
Ndecrensing. :
is monotonic inereas-

ing and hounded above, 4, being < % for an values of #, it

converges to a limit 7, where 1=k
If a monotonic ine;
it diverges to + oo,

For a full discussion, haged on arithmetica] conceptions,
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of this and the two following theorems, the reader is referred.
to Gibson’s “° Advanced Caloulus,” Chapter II, or to
Bromwich’s ¢ Infinite Series,”” Appendix I. The theorems
may, however, be verified geometrically, subject to the
assumption that theré is a complete correspondence
between the system of real numbers, rational and irrational,
and the points on an z-axis, the numbers being the
abscisse of the correspondlng points. O\
Let P, {(Fig. 1), where n ig any posﬂ;lve integer, bethe
point on the wz-axis whose abscissd is %, Then a,ll ‘the
pointsg on the axis belong to one of two classes, The upper
class consists of those points which lie to the right-of every
P,, and includes all points to the right of the point K whose
abscissa iz k. The lower class consists of\@very point P,
and ail points which lie to the left of a,{j{%;, . Every point-

PP RALK X

EIG: .1:

2

on the axis belongs te, one of these clagses, and every
point in the lower clags lies to the left of every point in the
upper class. Let Libe the point which separates the one
clags from theyother ; sometimes L belongs to the lower
class, sometimes’to the upper. Then I, the absecissa of L,
is the limi$\dF'the sequence. For, no matter how small a
posutlve Awthber e may be, there must be an element u,,
of t séquence greater than I — ¢, or the point whose
abséiseh is I — }e would belong to the upper class. Hence
2\, < e and therefore, for every n = m, [I—u,] <e
¢ sb that I is the limit of the sequen(,e

Brample 4—If u, = 1 -+ ﬂ + 5-! + ... 5 show that
the sequence (w,) is convergent. _
1,1 1 1 '
Mo <Lt ldgtam o tms—8—g3 <3
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Thus the sequence is butinled abos,
inoreasing. Henco it ix cunvorgont.

Ium
Example 5,--1f u, (l - _n)
Is eonvergent.

Bt it i monotonie

s whow that tho sequonce fu,)

nl #{n - 1) | X
R s e

i — DAL
G P T _(M___,_’l'}:ﬂﬁ

l ! :\.}
=1+1+(1~~)5_+... .

n

4
1 24 L2 — 1)_{-

1 1 \
u,‘+1_1+1+(1—;—+—1);+ PR

1 Gy
et -r) NS L
l 2 : .~ ‘ l?} 1
1 . - . T 1t
+( n-}—l)(l n—f-‘l’);‘ I I)(ﬂ-““‘
Now each term in the sod0hd sevies is qual to or greator

the corresponding borm in the first sories, nud the addi-

tioR?l ierm in the second “Beries ig positive.  Thus u,.; > %
 Also

Similarly,

me@F1 4L, L
n~\.. 31 LR

— o B

7!
hHencelthﬁg Sequence is monotonic inereasing nnd llour(lg;;i
above, Jggee therefore Convergent. From formuila ’
Chapter :XYfI, I

We see that the limit is e.

THEEGREM 11 1¢ the sequence

mg\ﬁ‘nd bounded below, o, being = £ for all values of =,
I tonverges 1q g limit 7, whepe ; = k.

ereasing sequence is not hounded below,
— o,
Theorer 1T ¢up be proved in much the S4IMc manner
follows . Ts or it m&y be deduced from Theorem I as
Let Vo= —g for :
. w 10r all valueg of 4 Then the sequence
_ (v,,} Satisfies the conditiong of Theorem 1, and eonseqnently
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it converges to a Lmit, & say. Hence, if I = — h, the
sequence (u,) converges fto [

The condition for convergence enunciated in Theorem 111
is known as The General Principle of Convergence.

TurorEM IIT.—The necessary and sufficient coadition
that a sequence (w,) should converge to & definite limit is
that, corresponding to any arbitrarily assigned positive
quantity e, however small, & positive integer m can he,\

found sach that, if = = m, @
| Upsp — Uy | < €, N
where p is any posutlve integer. (&

The condition is necessary. ¥or, if thé sequence con-
verges to a limit I, an integer m can be fz{lmd such that, if
n = m,

|%mu<%\

Hence, if @ is any positive mteger and if n = m,

iun-’.—p_un|—| Ynrp l)_"'(u _Z)I
‘:lum—ﬂ_”'f'[“n—”‘(ﬂ

It will now be showal" tha.t the condition is also sufficient.

Consider a sequ ea\se {e,} of positive elements which
decrease monot 1Q&i v to the limit zero, and let m, be the
value of m cdrre Oxpond_mg to e,, where  is any positive
integer : theM w, ., — 4, | < ¢ if n=m,. Let P, for
every n, b&the point whose abscissa iz u,, R, and 8, the
points Wt}ioqe abscisse are wu,, — ¢ and u, 1 & respec-
tne}g\ JThen the segment RS, is of length 2¢, and, if
oo 3=-
:’\(;1’." | %y — Uy | < €

uml S | < Wy =< Hoomy + €1

86 that P, lies within B,S,.
Now let R’, 8, be the scgment corresponding in the same

manner to e, If sny part of R’,S', lies outside R4S,
(Fig. 2), let it be cut off, and let the remaining segment be
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denoted by R,S,. Then R,S, lies within RyS; and ia of
length < 2¢,. Every P,, for which » = m, lies within
R,S,.

Proceeding in this way, we obtain a sequence of segments
{R.:S,.}, cach lying within the preceding one, and such that
the length R,S, >0 when # > co. The abscissw of the
points R, form a sequence which is monotonie inercasing
and bounded above (since R, lies to the left of S). Hdude
it converges to a limit. Similarly, the sequence ©f ab-
-scisse of the points 8, converges to. a limit '&n‘d\“ﬁhesc
limits are equal, since their difference is less,{han RS,
whick tends to zero when n — oo, Denete: (thé eommon
limit by 2. Then [ is the fimit of the sequénee (). TFor,

Ra S2 . Re S: oVR: Sh

R|.R2 SgS:X R|- SQS’{%VR F\’z SI_S(
Rg Y . 52
(a) Ry (c)
‘.}}?}&. 2,

if € he assigned, » cansbe chosen so large that 2e, < ¢, and

A4

'th_en, if # = LLTINPAN
%1 <RS g2 <

O) 1.1 1
.Em“"@lf\%wﬂ “_n-—ﬁ‘{—'z—g-f- e -E—m,
show txh{:b,,ﬁhe sequence (u,) is convergent.
Hm:.
!f":-%-\b — Uy = ! 1

l .
br T aEg -+ )

al
.

)
ATt e oL .
no+ 1) T o Tin T 9) -t . .
g0 that it p Lin -+ p)
Ugin un<n+m+.'.+ﬂ+p—-‘l
S S 1
O B e
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. u <1 ! -<1
or i P Ta o nS4p B

(14
) I

if n = m.
 But m can slways be chosen so large that 1/m < ; then,
fn = m,

Uy p — Wy = 6

§ 2. Convergence of Series o
£

If S, denotes the sum of the first » terms of the sexies
wy A g+ Uz F - - - \«
the series converges if the sequence (8,) is cqnfge%gent. It
follows from the General Principle of Convergence that the
series is convergent if, corresponding \fo'any assigned

positive guantity ¢, however small, 1{_integer m can he
found such that, for # = m, :
{Bpip— 8, | = 1“n-+1+1fw;7g+- et g | <8

where p may bo any positiyelinteger.
The above condition maw be written

...< l 'DRﬂ ] =&

ne -
where R, = 8,555, This quantity is called the partial
rematnder aftern ferms.

. EzamplpXA-Show that, if the series Zu, converges to T,
the series, ku, converges to AU.  [Cf. Example 1, § 1.]
Eromble 2.—Show that, if the series Zu, and Zv, converge
to Bland V respectively, the series Zlu, --»,) converges 1o
(PR V).

~AWDoduce that, if the series Sw, converges to W, the series
(N\Zu,, + 4, + w,) converges to (U +V + W)

/ Since u,,, = (R, it follows that, if the series iz con-
vergent, #%, must tend to zero as # -—> o0, This condition
is necegsary for convergencé, but it is not sufficient. For
instance, in the following example u, tends to zcro, but
the scries is divergent. ‘
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Erample 3.~—[The Harmonic Sertes.] In tho sories
b+ 34+ +. ..
let the terms after the first be combined jn Eroups o, v, ey ny,

- containing I, 2, 2228 L terms respoctivoly, amd lot
Y = 1, Then

”1=%:”s=§+i>f‘“—_£,va:k+é"|'.1 SR i“\
€ N\t
and so 6n. The number of terms in the first » BrOupsaN, )
ey By iS Y N/
141 + 2 4 22 4., 4 2m-z 2"‘{5‘.< N
and therefore m'\ &
__ I i NNNGEL N
”»—2“_1+1+m2 T -+2T_1’_\@:> B
: ' $

Hence, if p — gn 8.2 14 n; &Ifcl,"’consequently, when
f > @, 8, - ®. Thus the series iS\divergent.
Ezample 4.—Show that the serie§ Whose nth term is

VO a4+ 1) St - 4o

ir divergent,

§ 3. '%ﬁes of positive Terms

In this sectio {hrée important tests for the convergence
of serieg whose &rms are all positive will be given.
The Comparison Test—Let 2y and g, be series of
positive ferfak. Then, if the series 2, is convergent, and
; @y, the series Zu, is also con-
v_engi?‘; while if the serjes Za, is divergent, and if, for all
Lot ries 2y is also divergent.
\Case T3 convergent and u, <q . Let U, and &,
¢\ be the sums o # terms of Zh,, and Za,, respectively, and let
\"\3 “A be the sum to infinity of the latter serieg. Then, since
all the terms are Positive,
U, =4, =4

3

and

e

Un+1 =U
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The scquence (U,) is therefore monotenic increasing
and bounded above. Henece, by Theorem I of § 1, it con-
verges to & limit U, where U < A, _

Cask 11.—-Z2g,, divergent and %, = a,. For all values of
n, U, = A,: but, when »n tends to infinity, A, fends to
infinity ; henco U, also tends to infinity.

(JOROLLAB.Y T—Tn Case T, if %, = ka,, where L is positive
and independent of #, .E'u is convergent, Tor Zka, js > Y
convergent. In Caso IT, if w, = ka,, Ju, is divergent™)

to P
Example 1.—Show that the series z 1/n® is convergent
\
n=1
[Since 1fnt < 1f{in — lin}, » =2, 8, 4, .\ vthis follows
al

by comparison with the convergent se\ri&\a}z EH(nw — 1)n},

P\ s
{(gf. Ch. XVI, § 3, Example 1) : or see‘§' 1 Example 6.]

o
Kzample 2.—Prove that the Benes z —» (i} converges if
N ¥ n=1

s > 1, (ii) divergesif s & B

(i} If & = 2, the rcKﬂt follows from Example 1 by the
Comparizson Test. If{l « & < 2, group the terms as follows :

\ 1

“H"(z«Tss) At "+$)
A\ 1 1y
7 +(?+‘ ) e
:"\§¢
dO0 (Al <i-h
N 71 1 4_ 1
O ($+'--‘4'$)<@—;.;:’

\¥
v and so on.
Thus, if 8, denotes the sum to » terms of the series, and if

p=1+2+4F. -[-2'“‘1"“2"‘—]

sﬂ,<{1 (Zs—l}m}/{l 2‘ 41/{1—}:1J
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Now m can always be chosen so thut p 2 n. Thus

8, < 1/{1 — 1/2¢1}, The sequencs (S,} is thereiore bounded
above. But it is monotonic inecressing. ‘Therofore it is
convergent.

{ii) The result ean be derived from the harmonic series
{§ 2, Example 3} by applying the Comparison ‘Test.

CoroLLary IT.—If Zu, and Za, are scrics of positivé
terms, and if u,fa,, tends to ¢, a (positive) non-zero constant,
when n tends to infinity, S, is convergent or d;vér?g‘hnt
according as Za, is convergent or divergent. >

Let « be a positive number less than ¢ ; thef™® positive
integer m can be found such that, if # = w{)

¢ — € < U, fa, << ¢ 4 EN

K7
2

ty < (¢ + €)a, and > (¢ — ela,.

It follows,* by Coroila.ry.‘Ij,f'thB,t if Za,, is convergent, Zu,
18 convergent ;t while, if Ja, 1s divergent, Zu, 1s divergent.

Henee, if n = m,

 Bwzample 3.~ 8how that the series Z{a/(n 4 Vf{n® +n 4+ L)}
18 convergent, and thg, the series Z{1/+/(n? + n - 1)} is diver-
gent. [Gc}mparex..t!sem with the series X{1/n*:) and Z{lfn)

" respectively.] < W/

ad

&

o N

The .Rgtio Test —The series of positive terms Zu,, is con-
vergent iy for all values of 2 greater than, or equal to, some
value @) u,,,fu, < v < 1, where r is independent of #;

and is divergent if, for all values of n greater than or equal
te sore value m, u

o nftta Z 7 > 1, where ¢ is independent
s\l n

¢ * The ac}dition or subfraction of a Enite nurnber of terms to or

Lo & series does not alter the convergence or divergence of the

Berles : 1 merely alters the value of the sum of the serics, if it is

c:}nvergent. Thus, for the convergence or divergenece of the series
. @

z Uy, it in sufficient to prove that the series z ,, is convergeut or

=1 . .

divergent, R

T In the case of co
bositive number,
Wy £y, mZm,

nvergence ¢ may be zero ; for then, if £ is any
m can be found so that w,ja, < e, und conscruently
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JASE Vot g 10, << 7 < 1, where » = m. Then
in: Uy . y—y L. Wopnt1 g&‘““-‘m.
U Up—1 un~2 U
Hence
Uy 5 Uy 77 &\
« e b Y

But, since r <2 1, the series z U 7™ i convergent‘
(Ch. XV, § 4, Example 2). Hence, by the Compafmson '

Test, the series z u, is convergent; and, co\sequently,
]
ee] \ >
the series z %, ia also eonvergent '\\

=1
Cass IL. U [ty = > 1 WhteB n = m. Then u, is

= a7 But, since 7 > 1, f“"m’tends * to infinity when 7
tends to infinity. Hence u,,'tcnda to mﬁnlty when » tends
to infinity, and consequenﬂy the series is divergent.

Conorrary.—If, when » tends to mﬁmty, Uy 1 f1, tends
to a definite {pomtwe\)\bmt 7, the serics converges if »r <1,
diverges if r > 1

Case 10 X r l Let p be & number between rand 1.
Then m can baghosen so large that, if # = m,

\O
o i L
::}s. I u,
-
&g}? hwreforc

—”+—1<?‘+_(p—’-")=,0-

n

But p <2 1; hence the series is convergent.

*If > 1, let #= 1 4 A, where A >> 0; then, if n is a positive
.integer, > 1 + nh. But 1 4 wh tends to mﬁ,mty when # tends
to infinity. Therefore #* tends to infinity when » tends to infiniy.

I
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Casg IL.—r > 1. Let p be & number between | and #.
Then m can be chosen so large that, if n = m,

Satt l< r—p,
and therefore “1t1 % ¢ . (p — py=p. O\
ﬂ
But p >>1; hence the series iz divergent, O\

Note.—If r = 1, other tests must be applied. (Se(\;\’f'}!i»
example, § 4, Theorem ) %

Monotonic Functions—If, in the interval betwet}l Lwo
given values of x the function f(z) does not ; créase 18 &
increases, it is said te be monofonic increasing 1_n Bhe interval
if f(x) does not increase as x increases, ‘the function is
monotonic decreasing in the interval. \\"

TreorREM—If f(z) is positive and~tonotonic decreasing
for = 1, and if P \%

s

= A1)+ f@) + . -l-f(n j:fx)dx,

where =1, 2, 3, ..« ﬁhe sequence (w,) converges to
a limit I, where 0 < 12V ( 1)"‘

Hr=a=r4 hwhererisa pomtlve integer,

\}"r) 2f@) zfir 41

and therefore D

"’”'&" ’
R\ m+ -
D foy = [ s = fir + 1),
Va\¥; ) .
) Thus .
=10 = Z{[™ @i — s +- 1)),
é{j @)dz — fir + 1)}
go that y 2 f(1) and w,, < u,.

*If f{@) decreases continuously for =1, 0-<l<f(1).
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Also

|

-w,!;z Lf j'r f,c)d'x + )

"Therefore the sequence (u,) is monotonic decreasing and is
hounded below. The result follows from § 1, Theoron 1T,

HEurer’s CongTant.—In the above thedrem let f{x) = 1/x; O
then Ko N
1 . ‘\ ”
=145 +4 4. --—H—logn W
N

Whein n tends to infinity, , tends to a limit betweerr 0 and
1. This limit is known as Euler’s Constang, abd is denoted
by w or . Its valuc is »
e 01 N
0-577 215 664 90 . . &
Maclaurin’s Integral Test.—If the .fu‘mftion f(x) is positive

and monotonic decreasing for z a I the series z f{r) con-

'. ’.s r=1 .
3 o
verges or diverges aceordixig’as the integral j flz)dx con-
’ 1

S
verges or diverges. o\
Let S, be the sufa‘ofthe first » terms of the series. Then,
in the theorem Bhove,
O n
NV s, = j Fa)dz + .
N y
NowS@hen 2 tends to infinity, u, tends to #. Hence 8,
tend§ ¥6 a definite limit or to infinity according as the
llltegral tends to a definite limit or to infinity.

Emmple 4.—~Show that the series 1 + 4§ + 3 + 3 +.
18 divergent.
[eal

. . 1
Ezamgle 5-—1f 8 + 1, show that the series 2 o COnverges

. n=1
or diverges according ass > L or ¢ < L
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Erample 8.—If x is positive, show that

L:{Z 14 ni?f ~ 2.
>0

ne=]

o
. x R N
[re>0 3 =) vt 4
n=1 A,
=47 —tan-1p + qﬂ(x}, where 0 = dlr) = i—\' ?gj
Ezrample 7.—Show that the series \/
) z\.s

4

1 ¢
2 gy AL
=2 \/
converges or diverges according as p > 1 BN = 1L

[In the Integral Test put flz) =1 {{‘az:ﬂulg x)?}, and talee 2
83 the lower limit. Then, if P =500

X 3
N\
»

" dy O
| 2 zlogz — 108 (logn) — log (iog 2) ;

while, if p + 1, AN
: J‘ﬂ dr__ Mlog n)-» — (log 2j1-» ]
2 (logaje 1—p :
“4

) iﬁf}\ Absolute Convergence

The convepgence of series whose terms are not all positive
will now be \ednsidered.

Absolute Convergence — £ the series of moduli X | %, | s
convefgeit, the series Zu, is itgelf convergent, and is said
t%;g}ébsolute]y convergent,
(The convergence of Zu,

«(bh X1IT, § 7, Theorem I).
RO

\ [ty + R R [

\ giuﬂ+1i+iuﬂ+2i+"'+Iuﬂ+9].

For, since F | %, | is COnvergent, m can he chosen so large

that, for # > m, the RS, < e; hence the L.H.S. is also
- less than e,

follows from the inequality
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Fzxample 1.—Show that the series z =2 nﬂ, z s nf

nt
abaolutely convergent for all values of 9.
Sinee
cosng| 1 |[sinnf| 1
e e e

tho results follow, by means of the Comparison Test, from
§ 3, Example 1. .

Hrample 2.—Rhow that the seriez Xr" eos né, Zr® sin nﬂ az‘e»\
abzolutely convergent if | | < 1.

Ezxample 3—If | » | < 1, show that A\

77N
 { Y

s,,.

{i) — 1—reosd 4 4+ roos 6 - 72 cos 26*/:’

1 — 2rcosd - 2 "
+ri%eos 38 + .. .
'=rsm6—]—r”sm%
\ +fr‘sm‘%9+

(ii) #ain 8
1 —2rcosd 4 »?

1+t
e e — H
{1ii) i Broon 0 7 1+ 2’1' 0085‘ —I—- 2r? cos 28
&Y + 2+%¢cosd8 +. . .,
cogd —r 3

iv) SO —T e :

(iv) I —2:- coa& g ’jc:a’éﬂ + rcos 28

~ +ricos 30 +.. .
(l—f)eos&\

) I — 2rcoaé B’\—Mr'"

[Multiply the'series on the right-hand sides of the equations
by 1 — 2 cop P+ 1, or, for {v), by 1 — 2rcos 26 } 73 and
add the gdefficients of the different powers of r. Soe also
Ch. XV 3.9/ Examples 5, 6, and Ch. XX, § 5, Example 2.]

Emca??tpr’fe 4—If x + p > 0, where p is a positive integer,

\that the series

wQ}J' Z{“g0+§)—ﬂi

\:

=cosé +rcosdd +-ricosdt 4 .. ..

is absolutely convergent
Choose m, a positive integer { = #), so large that, for n Z m,
{wfm| < 1. Then, if n = m,

tog (1+5) =2~ gmtam— o



h
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and therefore

o o ot iad | gt
tog (1+2) — 2| < wil *M e
| I"{ o | a |? }
= — — P
= nt 1 | ™m T
o o | o | l
or log(l-l__-)_';& Tl —ap| ur A o
7 AN
where n = m. A\
\ -
Now the series z -2 18 convergent. Hence, h_\{,‘fj{u. ¢am-
parison Theorem, the series K7
&/
o ..,\
o o \
Z {log (1+3) - aL
n=m

72\
is absolutely convergent. It follows $hat the given series is
absolutely convergent. \/

Power Series—A series of,,'thié' type Za,x* iz called a
power series. If, when » tefids to infinity, | a,/a,,,, | tends
to R, it follows from theSRatio Test that the serics is
absolutely convergent ffy"

...‘Ta.mlx“‘*l _ =] <1,
a,an R ’

il

i.e., if
\ < —R <z <R
Théistance R is calle
N>
the\'mterval from — R
snterval of convergence.

d the radius of convergence, and
to R, denoted by (— R, R), is the

—The numbers # which satisfy

: form the closeq interval (g, b),
while the numbers % for which & <z < b form the open

interval (g, b, g <g = b the interval {@, b) is open at

@ and closed at b, while jf & & & < b the interval is closed
at @ and open at . The interval (— R, R) above is an
open interval,

N\
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Eaample 5.—Show that the series Zx*/n is absolutely con-
vargent in the open interval (— 1, 1).

Erample 6.—8how that the series Zix®/n® is absclutely con-
vergent in the elosed interval {— I, 1).

Erample T.—5how that the series Zx=fn! is absolutely
convergent for all values of =,

The Hi Jps"rgeomebrw Function.—This function is defined

by the series ’
. B oo’ 4+ DB —f« \\,

Fle, 8; v; o) =14+ —zx + at 4y
Peofis s =14 1o+ =g “z,
the {n + 1)th term being . m\.
" zm(a+l)...(m+n—~l,8,8+ B—I—n—l

" Yy + D).y tn— 13\% i
provided that v is not zero or a ﬂBgﬂﬁJlYﬁ integer.

Thus \W

s _ (1 1B £ L NEDIET

ey {y + n)m 4 BRT (1 N 1’) (1 , 1)
n

&

and this tends to%{éflen # tends to infinity. Honce the
series convergeg'absolutely if | | < 1.

The convergerice for the cases x = 4 1 can be investi-
gated by means of the following theorem :

TrEQREM.—If, for all positive integral values of =,

&,

\\\ ek Dt . @t
AN "TEFELE+ . B
‘i\‘\:vhere £ is not a negative integer, then
A

|uﬂ| <,;;,efu’

A being a (positive) constant izidependent of =.

N\

Oy
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This theorem follows from the following lemniis
LemMa I—If ¢ is not a negative integer, and f, tor all
positive integral valaes of n,

v, = ﬁ {(1 —[—%)n_;}, A

r=al
the sequence (g,) converges to a definite non-zero 'Ii'r’niﬁ‘.’
For,if pisa positive integer auch that + p =@y and if

%
ol
"

e oy —ar A )
w=TT{(1+2)e }’“zf”f’“’f{-&
rep

then w, = etn,
n f ':1\\"

h . _ r A &
e 3 (e

rag 4 ),

But by Example 4, s, tefids to & definite limit when 2
tends to infinity. Hengdtto, tends to a definite Non-zero
limit when # tends to infinity. Now

v,,m-f“w,, X & non-zero constant,

¢S 3
Therefore o, tends to a definite non-zero lmit when =n
tends to mﬁl}by

LEMII@\“I:L:——H ® 18 Dot & negative integer, and if

Nl 1

g\,‘x Lj——]i“_t_?_)_;_-_-_(g_-!r__@, n=1,2,38 ...,

O n ! na
A

8o sequence (r,)

\pd converges to a definite non-zero limit.
For

AN

\“: ”ﬂ__:-ﬁ {(1 L g_)e-s.‘} ' ea(i—i-_;-i-. . .+£—Iggﬂ)

r=1

d the resuit follows from Lemma

an 0
Euler’s Congtant I and the property of

established in the Previous section.
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Lamma HI.—If ¢ and 8 are not negative integers, and if

ool e+ 2) )
i’”_(ﬁ+1)(ﬁ+2)...(ﬁ+n}“” ,n=12,8...,

the sequence (v,) converges to a definite non-zero limit.

For /
o le+ De+2). .. (x+ ) OV
" h n ! nﬂ- " :.\ "~
LBEHB42) .. B
’ nlnf L3
and the result follows from Lemma IT. v

As the scquence (v,) in Lemma IIT is con%rei'gent, it is
hounded (see § 1, Note), that is, there is a\pbsitive number
Ton AR ¢
A, such that &

[ ] <A, n=12083%". .

From this the theorem follows,\ ™
For the hypergeometric fungtion F{e, 8, y; ) it follows
that, if y is not a negative ibteger,

: a~ A '
N
N >

Thus, if |z %\, the series converges absolutely if
v —a — B >0 ) [Sec § 3, Example 5.]

Hrample 85 Prove that, when % tends to infinity, the product
AN

O T () - v)
QA E r—=2r + ol
p\{héi‘e x and y are not integers, tends to one of the values
NN, 1, k.
\ ’ Example 9.—Prove that the series
& z{x + 2) + slr + 2@+ 4)
x+3 (x4 3Mx-+5 " (xz + 3)r -+ B)ie 4T

is absolutely convergent unless x is an odd negative integer
other than - 1, and verify that its sum when convergent is =,

Foow s



364 TRIGONOMETRY L XVIT
Erample 10.—Show that the sering

a  ala+ 1 ala -+ 1ia _—_'r:!_}
st D7 F B a5

is ebsolutely convergent it b > a 4 1, unless 6 o PATRTINT Y

hiegative integer, and verify thet its sum when Cutverzent is\

(b — 13(b —a — 1).

Erample 11.—1f in the series Xu, of Positive rerng *Qw
ratio a,,, ,/a, ean always be expressed in the forn ‘“’\f\\“..’
_ E _A_‘ll \ N/
=1 - 4 N\
where » > 1 ang [k, | £ K, K being a (png{:i:ﬂ-} constant
independent of %, prove that the series js convergent i . = 1,
divergent if » < 1. )

Let m be a positive integer so large that i

a‘n 41
aﬂ

x&

L | “
Pm = _?;“:,:'?ﬁ”’
pm < 1. Then, if QO
&k N
ur*;‘_—,_;,,, ¥ =.?g;m+ Lwm42 ...,

O8N

Bk Q}f"‘“ ko1 1 |
llog(1_';‘f“;;)“‘}";rtj?‘.—"—gur"—'ﬁura — . ..

K 1\
S 5GP Xt gt g g S
\ mgpme 1

AT

Henceéy by' the Comparison Test,

‘A

(N w
g\ 2 ozl —u) 4 um
{ rem

ik absolutely ¢onvergent,
\ Tt iollows that, i
w\ w4 *

Wy = n {(1 - 1‘-&,)6?},

4
=

W'y, tends tg g definite non-zepe limit when 4 t ds to infinity,
and that this is also frue of ™ 7 tends to infinity



§ 5] CONDITIONAT, CONVERGENCE 365

. k3
w, =[] {(1 - ur)efg}s
=1

providod that none of the factors vanishes.
Noxt, let

f
P =n {1 — 2} x uh
¥—=1
1 i
. —pfl+z4+ ... +-—lognr
Then ty, =W, X e ( T2 ® )’ « \/

and therefore v, tends to a definite non-zero limit when n
tends to infinity, provided that none of the factors vanishes.
Now \:...>
N’

Unypy = Gy r[ (1 — u_r)- x'\\';

r—1 ..'\:’
Ilenes, by the Comparizon Test, Corcglié,rj; II, X, converges
or diverges according ag X{1/n*) converges or diverges. :
Ezample 12.—Show that the segie?ﬁ
o0 : ,s:';‘
z oo -+ 120w + 38}, . {2 + (n — 1)%}
BE T THEA D). . (F+im— 1
28

=1
whore o = 0, g = (, ﬂl&i&'ex'gent-.
N
,§‘15:; Conditional Convergence
A serics whith is convergent, bat is not absolutely con-
vergent, i&’said to be conditionally convergens. .
In ‘ésting for conditional convergence the following
theatein is often found useful. _
"(21’583’3 Inequality —If (c,) is = monotonic decreasing
~\Jefuence whose elements .re all positive, and if

g kéul“‘uz"t_---‘f'uréﬂa

where b and H are irulcpendent of randr=1,2,3, . .. %,
1hen

et ety b otty + 0 o Gty = 6L

‘..\.\- o

N

- N
Ko
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Let S =cy + cquy + . . . + ea1,,,
and e=utuy .. 4 ou,
" wherer=1,92, ., -y n. Then
8 =c8 + Ca(s; — &) + Ca(85 — &) -+,

i ) Ebu(""u "‘Iﬂ—l)

= (61— cy)e + (g —cgdsy + . . . (Cnmy — u) Sy F e

Now the coefficients of 81, 8 . . ., 8, are all pagitive
(or zero), and each of the quantities g, liea b(:t-wvvn:k{md H.
Hence ~%su

N
8 g {(c.l e cﬂ) + (02'_03} + PR + (cﬂ—l - Cﬂ] ,-{‘.f-_,, }'“. - CIH)
& ?

and o\
Sz{a—ed+er—cp)t... 4 (CntSCn) + 0} = cph.

Therefore Gh=8 < c,{{s\

Ezample 1.—Prove that the smie:f Z E%ig is convergent
if ¢ + 2mw, where m is any gnﬁgge;'

From Ch. V11, (9) we havel
€08 (n 4+ 1)8 + 20g {n -[—j'i..")y’-.i- .

s i
PR —f—-%i)s(n—i—p}ﬂ-:cos(n_}_}i_-{__]:)ﬂw_

C o sin 48’ )
Provided that g (B,
But X\
_:,!'gcos(n-b p;-'l)ﬂam%pﬂ =1
Hen@é,l\lt" f + 2y,
x:\u’
-iw = oo8 {n g + cos (0 4 28 +. ..
N px L
“:;\ - seeteos(n4p) = sm3dl
(N" Thus, by Abels Inequality, if § 2ma,
\\‘ . - 1 oy cos rg
- __-_-_-_-___?—-—-—- = _——— — ‘-_____—'-'_.""—‘-'—“',
th + 1) s gg| = z r E(a»a—|-1)]s1n§49]
K r=g#41
n+p
or

P P 1
t=n{1 " HW@T.
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Rut, by teking = large enough, the guantity on the right
can s mads as small as we pleage. Hence the geries con-
vergas if 8 + 2mo,

. &
Eromple 2.—Prove that the series z o

8 = Zmn. If = 2mw it vanigshes identically )
CO8 n& gin nf 78

] z POT are N\
convergemt for 0 <5 £ 1if 8 + 2mm, and that they converg@ \
abzohiely for all Values of #if & > 1. 7\

\/

is convergent if

Alternating Series—If (a,), & monobonic. deeréa&ing
geqirence whose elements are all positive, con'iferges to
zero, the series ;g'\

y — Gy 4 Gy — &y . . . \
is convergent. A series of this type is’c’a}t[é'd an alfernating

series, ~N\
To prove that the series is co‘r:Wergent apply Abel’s
Inegusality to the sum N
A=ty —t,, *{:- &m+3 -k Oy
with ¢, = a,., and s, = 4o 1+1— . . to r terms,

Bere h = 0, H = 1,80 that
A\
.& JOZ A= g,

Now, when ands to infinity, 4, tends to zero, and
therefore A tend}g to zero. But -for the alternating series

.\’ A=|8,,—8,].
He\c}} ‘the series is convergent.

A
PByample 4.—8how that the series

e 1 —3+3—34...
\\ 1% convergent,

Ezample 5—8how that the series Z %‘ converges for
—1=2x <1
Ezample 6,—Show that the series
2 -1 4+ 14 -1 4. ..

is not convergent.
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[’z&n = 4 (l + l), and does not -~ U when ¢ » - ]
n :

Hrample 7.—The Hypergeotnetric Funection. H}'O.\‘. ‘Lt the
series Flu, 8; p; — 1)is conditionally eonvergent if

—l<y—u—-8=nun

Hero
1%l x4 B+ w)
waal T T ANl ¥ <
n(?__x_g_f_ 1 _f_?’_”_’__"_-_) O

- ]

R

O Hnl +a) N
Since y —a — 8 4 1> 0, it follows that thad 4y posiiive if

» is large encugh. Hence, for n large, ~\
]uni—2| = [uﬂv-ll’ \~
Apgain | U1 | < ?‘L_V:;ATJ"‘\;”\ ’
and therefore Unyy = 0 when n’—; .

Thus the scries is
ultimately alternating,

and conspguently convergent.
Derangement of Series —J¥f%he order of the terms in a
series is altercd, the seriéfNis said to be deranged. If the
series is absolutely comvergent, it can be proved  {see
Dirichlet's Theoremfbelow) that the deranged series con-
verges to the sani® sum ag before.  On the other hand, if
the series onl‘yy‘eui'verges conditionally, the deranged series
mnay converge to a different, sum, or may he divergent (sec
Examples;ﬁ; 9 below). For this reason absolutely con-
vergent{ Sefies are said to converge wunconditionally, while
serios awhich converge, but not absolutely, are said to be
c%“ﬁiom&y convergent. :
K Dirichlet’s Theorem,.——The sam of an absolutely eonver-
sogent series is not altered if the series i deranged,
O CaseT—Let Za, be a convergent series of positive terms
\/ whose sum ig 8, Zb. the deranged series, s, and o, the sums
to n terms of Za, and Zb, respectively,
Sinee every term in Zb, occurs in 2, it is possible to
take n so large that évery terniin o, ocours in 8. Then

Om = 8, = g

= "n =
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Thus the sequence {o,) iz bounded above. But it is
monotonic increasing ; hence it cenverges to a limit o,
where ¢ = 8. _ _

Again, since 2, is a derangement of Zb,, s <o It
follows that ¢ = s.

Casm TI-—Lct there be an infinite number of positive
and an infinitc number of negative terms in the absolutely
convergent scries Xa,. p \t\’

Lot P and — Q, be the sums of the positive and negatwn
terms reqpcctlvelv in ¢,; so that p + v =1 and M and"y
tend to infinity when n tends to infinity. Then, ify} R

Puzﬁal|"|‘|az1+- . "+"1anix“":,\\
P.u "+ Q-v:Prn P,u_Qm:'gm

and therefore 223

v

S
PH = A(Pn + .0 = %fRn — 8,)-
Now, when »n tends to mﬁmty,, B Sind s, tend to limits p
and s respectively., Henee P a.nd Q, tend to limits P and
Q respectively, where R

P =1 +6) Q—B(P_‘g)
But the series Wh05g~§ums are P and Q are convergent
series of positive %emiis, and their sums are therefore not
altered by degdngement. Hence s, which is equal to
P—Q i m)t alt\ered by der&ngement
E mmﬂ&\ The conditionally convergent series

O -3 +4—-1+31—-
LOnVel‘és to the sum log 2 {Ch. XVII, (31);. Show that the
derﬂl}ged geries
~O 143 —3+F+1 -2+
\ ‘converges t0 the sum i log 2.
Let &, and g, be the sums to n terms of the first and second
series respoctively. Then

z(n_s an—1 dn—2 dn)’
1
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n
1 1 1
and Uantz(m‘_'————u_a-{'m—————-_l"—%).
1

f
12 I ] Lo,
HBI'I.OO Ogp — Syn = -2— (‘2—;—_—_—1 — 2‘}‘?) = :_Z Sap i
1

N\
80 that A
Tan = B4y - 49,,. R

Thus, when » tends 1o infinity, oy, tends to 2oz 20

For an alternative proof ses Examples XVIIL, 33

Example 9.—Show that the series A
IR AL R RS R SR o) Ty
is divergent, \

N = inin 4 1}, the sum of the ﬁxrs@\N + n terms of the
Beries ig € .

11 SRR R\ &
{1+§+'3—+...+§—N—-':IQ§}(2N}}

| 1.1 RN
‘§(1+§+§+“;,§f‘£f‘l°gN)

TN R 1 .
-3(1 TEtgt S L —bgn) + Liogn 1 9)

When n tends 1  infinity, each of the expressions in the
brackets tends to{ Eler’s Constant, while the lagt term tends
+ - 3 ,\\’0

x § 6. Multiplication of Series
Let, {he\ two series _
Oty oy oy 4 P L I AN
'thsolutely fonvergent, their syms being U and v respec-
Stively, Then if
.n\‘o

¥

&\l Wy = gy, + Uy + Uty + .
\ wheren=0,1,2,__

L + uﬂ”ﬂ!
- » the serieg
1va+w1+w2—f-w3+_. N
converges absolutely to the som [Ty,
w Vi, W, be the sums 4o # terms of the three series.
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Case T—Let all the w's and 's be positive.
Any term u,n, in W, is included amony the terms in the
* product U,V,, but only those terms a,», appear in W, for
which p and ¢ satisfy the inequality » + ¢ =n—1
Therefore
W, =1, V, = UV.
N
Thus the sequence (W,) is bounded above. Bub it is
monotonic increasing; hence it converges to a limit W\
where W = UV, O
Again, the sum W,, , contains all the terms wgwq) for
which p 4 ¢ = 2n — 2; therefore e \ e

p°¢ 2

LV
W?.n——l 2 UﬂVﬂ' \ }
In this inequality let # tend to infinity, andget W = UV,
Hence, as W < UV, R
W =TUv. ()"

Cask IT.—The #'s and v’s arez&iﬁt all positive.

Let the sums corresponding-§8 U,, V,,, W,,, when all the
terms are replaced by their soduli, be U, V', W', respec-
tively, Then, as U,V Contains all the terms wu,v, in W,

and others as well, ¢

| UVt W, | < ULV, — W,

/N
\.

3

since all the,fetts | u,, | . | », | remaining on the right after
the subtrachioh are the moduli of the corresponding terms
remainingion the left. Now, by Case I, UV, — W,
bend?\ “%ero when # tends to infinity ; hence U,V, — W,
algg tends to zero when n tends to infinity. Bub UV,
:{5*%nds to UV ; therefore W, tends to UV.

4 \ Y
\ /' Emzample 1.—Prove by multiplication that
exp (x} exp (y} = exp(z + ¥)-

Here v == _¥
LIS Byt Pail = nb
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and therefore

ol ! y PR J.;.. ) o I l ) i"
Prry = on 1 (n—l)‘ l'+(n-—2}'2"' nt
E n(n - 1}..11_9_ I n).
) e s x"“y-l— T A +
= By
T ar \
Bzample 2.—Prove by mn]tiplication of suries that, P ’\t\,‘
(i) ercesd gog (rsing) = z 1 CO% nil, \ \/
N

n=}
[For theorems of greater generality, @.I\Jthe multi ph( ation.
of series the reader is referred tol Bfomwich's © Infinite

Series,” second ' edition, pages 9D ~047]

§7. Dql.i;bie Series
If each of the series o

al
™S

% ~3

> um.;&= A, m=1193,

AN

nlg

13 convergent \d if the series Z A,

is also convergent,

x“\s.
\“; z z Um, ne
O

m=1 p=1
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in which the order of summation bas been changed, is
convergent, and if it has the same sum 8. The conditions
for this stated in the following theorem are sufficient,
though not always necessary.

TrrEorEM.—If all the series

sl
Ap= Dty g, m=1,2,3 ...
_ A e
=t o \H
&)
are absolutely convergent, and if the series z A',,, where’
m=1 N

= O
Al = Z | Y, [, m =1, 2,3, . ‘1’:\.\\'
n—1 ’

4
is convergent, then the series N
S \‘ ]
B, == z Uy ns B=1,23 ;’.;'.’ , and ZBH
=1 o =1

are all absolutely convergent, and’

w0 oo "’:i;;“ o %0

zz-um'nEZBmizzZum'nEZAm—_—S.

=1 m=1 a=ilm)\ = m=la=1 m=1

- {
The terms of th &Qh’i)]e series may be arrayed as follows,
with the sums gpposite the respective rows and columns :

PN W

Uy e ¥y, 20 Yy, o5 - s s e Ay
T,"?\I’f Ug o, g, oa, « v o s Ug 5o 00 Ag

(H30 0 Ugom Uam o s Ug o AAq

ad . . . . - *

S
"N U, 10 Wpm, 20 Uiy 30 -« =« 5 Yy 0 -+ o -Am

B, B, By ..., B, ...

T[I.he first method of summation is then said to give summa-
tion by rows, the second method summation by columns.




:"\:‘.’aire all absolyte
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CasE L—Let all the terms Uy, 0 be positjve, so that A",,,
is identical with A,. Then, since Mo w A, where mis
any positive integer, and sinee the series 373 s Is convergent,.
50 &lso, by the COMPArison test, are the weries

o
B,,zZum_“, n==1,28 ...
m=1 N .
Again, if . oA
Zﬂ = B]. _i" Bg + - _}_ Hm :\.}
since each of the serieg B,B, ... B, is (.'flll\:'&l}gent,‘ 80
also iz the serieg obtained by adding their copeesponding
terms.  Let o,, be the mth term of this seried, 5o that
o'm:um.i"f"um.z‘i‘- . ‘+:‘wm:m
being the sum of the first % terms o e mth row.
Then o, SA,,m=1, 2,3, . W Ny and therefore
20 { : )
z"ﬂ g zf%&m == S
Thus the gequence (L,'J Is bounded above, and it is

monotonic increasing, Hence it converges to a limit Z,
where X < g

Conversely, it ‘@g&ww be shown that § = 5. Therefore
. N
N =8
Cas® 1L C0et the terms 4
| %, .. x|,\_s.‘A’m and ZA’
\ &/ w
N B~ u, ., n=12913 . .

3 m=1

m, n be not all positive. Since
m i8 convergent, the series

»
&
&«

ly CONvergent,
As before, let

EﬂzBl+Bz+- -1 B,
and o

e L .
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so that the series Zo,, converges to the sum Z,. Also let
8, o' 2’y be the sums corresponding to 8, o, Z, when
each u,, , is replaced by its modulus. Then

S-‘-Zﬂ: z Am— zﬂ‘m: Z(Am""o'm)
m=1 =1

m=1
oo
== z (Ui, iz + Yy mra - - - )- ,\‘\‘
m=1 '\ K
Similarly, N
0 . ‘ :
S — Za= > I % nra |+ | S i JEY )
m=1 \V

m\/
18— 2, =18 — 2%

But, by Case I, when = tends thJufinity, 8" — Z', tends
to zero. Therefore § — X, tends Yo zero. Thus the series
ZB, converges to the sum 8, o8

Substitution of ¢ Power Series in a Power Series —The
above theorem is partieula:rljr useful when a power series is to
be substituted in a powenseries. ‘Thus if, in the power series
Loyt y is I‘eplacq@?’k\)y the series Zb,x", and the resulting
series tearrange@ Nn powers of @, the sum is unaltered
pravided thatothe series Zb,z" and Zu,¥", where

¢ Y =2ba" |,

Henee

are &bs{’riﬁ‘t"ély convergent,
Eéim’éale.—!‘he Binomial Theorem.
.~:I’r0ve that, if —1l<e <l
e
\;..{]_ +aym =1 +;it’$+m(_m2_{_l)x%

e D = B gy

where (L - #)" has its principal value (Ch. XVIL, § 5) ; thatis,
(1 +=)™ =1whenz =0. :
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We have
(1 -+ :?.:)"‘ = g™ log (1423 v

- Yy vy
-—-I+i-!‘f?2!+3.+-‘--

x! 373
where y:m(x-§+§—---),
a series which converges absolutely if | x| < 1. _ O\
2 3 N\
Lt ¥=ijmi (o) + 81 120,y
:
Then 6Y=1+E+X_ D
11! 21 "\\.
N\

and this series converges for all values of Y. o)
Hence, on altering the order of summation,we have

o 9 .\
"o 1 q“. g
(Ltam =14 ZFP\P"(m)’
P

where P,(m) is a polynomial iy of degree n, the term of

highest degree being mn.  Tha Series converges absolutely if
[®] < 1. N

Now P(m) vanishes if ﬁ%'& %, 1,2 ..,5 —~1. Henee

P,(m) =m{mAN) (m — 2y, . A —n 4+ 1),
Thus the theorem has been established.
\\‘

N\ EXAMPLES XVIN

) ll 1 1
TR R Y

prove \:ijtha’ﬁ the sequence (x,) converges to a limit between

2 4
" . |
?};ﬁtﬂ“ T e =g +17 3p 33 = 0. Hence (u,) is mono-

’5’ -’ . -
"\' tonie Increasing, Also 4

n .
» <n=1; thus the sequence is
v/ Pounded above,

Again vy, ~ #; = §, and
n o
Uy, <%+§E=%+i,
80 that the limit < § 1.]
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. . o N o
2, If u, =sn (n—+ 1) + sin (n T 2) + .+ Ein (2;-%),
prove that the sequence (u,) converges to a limit between
37 and =.

3. Bhow that
1+3—-4+3+t—t+3+—%+-
[33“:(1+§+%+...+E—-10g4n) .
1 ‘:t\“\’
— .;.(1 +143F+ -+ 5 — log 2n o\
1 .y
-—%(1 +3+3+.. .—|—ﬁ—logn) T(‘}‘hg2
Now apply the property of Huler's (}onsta.n{xgiqésﬁ in§3 :I

o

4, Prove that \
— fg%—' 2
og %

M 1-p=t+i—3—F+3—d
) 1—f—3—f+3 =3 —dopusti—

5. Bhow that

—al

=%°F’: s
L

N’

%
4 v
L D

w

£

< 1
z ?‘Hir_('%’——_’i’% 10g3 —_ ‘})
=1 v
8. Show that the series
1-3+4— 3 &3+ -
diverges to — oa\'\\';
-7 It hid + nAl + _].%"_—._1
' Sy mrer T @y
h{t ‘hhe sequence (u,) converges to a limit between

1 -
B e . e

show ¢

i and X,
'\\ - a?
=2 G

AN
" where @ = p - } and p is zero or a positive integer, show that
. 1
—_ 1 [ — _
(i) u,_210g2_2(1+1}+g+. X .+2p+1) + T

() ey =t — s — .
#+1 » 2p-|—]. 2_’P+3
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9. If » is & positive intoger, show that,

s (B
!
[Assume that the inequality holds for n . 1,2, 8,..., n:
then
ot > e(n + 1) K (rL .|. ‘))nil e
n —i— 1 :\..\
n ’..'\ )
But, from Example 5, § 1, (1 + ;-_1{__1) Y Therefore
N
(n + 2pet
a1 - . & §/
en+l = TR \\
aﬂNO\T the ;nequa.hty hold® when n = INMienco it holds for
values 7
of n.] \\./
o &
10. Bum to n terms the serles z ——«——l, and Jiscuss the
Y ﬂ

Bum to infinity : dedyce ¢ p@t the Beries Z nl ia convergent.

2

1
2n+ ) S=§
11, Show that \

Y (RS

NP> [See Exarnples X VII, 88.]

12. Pr\)(re that the sum of the first 2% terms of the harmonic
33“‘3“\1 144+ ¢+ .. liesbetween ] + dnandn + (3"
‘2@ > (; the sum of the firgt, 3" terms lies between 1 + fn and

g

'\
nq

wlﬁu

,~l’~.\ 13. Show that the followmg series are dwergent
‘..\V.
\W i) +n
\ 4 ( z (na + 1) (11} Z ﬂg (lll) z nt + b

{ o
IV} gl ﬂl{‘\/{ﬂ- + l} — ‘v’ﬂ}”
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I 1 1 1
0 gt —mtE ottt o

.. b -8 11 14
(vi) ﬁ+ﬂ+§_5+ﬁ+' .

id. Shaw that the following series are convergent :

@ Z i @) ¥ 5
n=1

75
¢\
o ...\.

nl + 1 - . I \ W
{iii} z n‘ AT 1 {iv} z F T (n — D Ty
=1 3.“ :

4 '\'“

1 1 1 1 A
(v} -+ +23—|—m+2’+x+',?"

142 24 %
where x > 0. AL
15, Show thdt the following series are'\éanvérgent H
n+1 n®
(1) z 'n.( + ) ('il.} 2 1"
ne=l & I "
0 2 : NS
I as |
i) > E;', R Y z (1 - -) .
=1 p n=2
# {w’\\ ©
16. Prove tha.b\ﬁfé' series z 2—0 is divergent.
naul

17. Provexthat the following series are absolutely convergent
if -1 <\m 2 1:
Q%2 2, 2y
(\\ 4 TN
} 4.5 5. 6
) 752 + g + ac5 + .

\‘.
7 (ii} 1+2x+3:c*+fkc5+.
(iv) 1.2 + 282 + 3.4 + 4622 4. . .,
2ﬂ—l+1

QAN ISR o o & Catie R, wl - v A 2% F 1 Ll SRR
2 2 A
W mtTrRt e TiEe T
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18. Test for convergency tho followine s

{i) z (n? +' ”L“ {11} z ”L:IJ:“, whete p g &
i
L
pomtwe proper fraction,
[= ] n
nl . o 1w
Git) 37 o, ) 3000
n=qQ nol £ \\ ”
P N/
1
™2 S 1 Wiz,
n=0 "= %
o " \Q\
(vii) Z &7 cos (nx + «), \
n=1 x',
axx ] e
il &~ (5)" 4 (£)" = ~ () #¢ N
03 ( 8 ) ‘ o " o
(ix 28 nw — 8, (GRS .
}2 n(n+11’.‘ "("z(n)' '
{x%}n—l . A :’v
(XI) 2 (Q;E]n — 1’”\ (Xll] z q o 0.
fim=0
Ans. (i) Bo}iqﬁges absolutely for |z <1 (ii} for
|21 < 1/p ; i) and (iv) for all values of z ; {v) for all values
Ofmexcepdi»m-—-o; (vi) for |z < }; {vil} f rx>05
(V‘m} and\fix) for all values of ; (x) for | & 4; (xi} for
3 (x) le ] <45 (

far| 4\{»' {xit} for al] values of 3 except 0,
Q\If

j@‘) log( )+Iog(1+;)+...

NS

<.+ log (1 +5) — x5 log ,
where z = _

tormn i I, show, by considering the series whose nth
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20. Discuss the convergency of the series:

) = 3r — Byl
(i) z (—‘EET)'—;

n=1
.y 4 @ e
(i) ﬁﬂx+2a+x+3w T
¥ ,oxr 0 af .
{i11} 12 %3—."2_‘_“;473_’_“:5—{-...,

n—=1 =1

381

"
7NN
" 4 Y

Amns, {i) converges absolutely if § <x < ‘&hd con-
ditionally if w = }; (ii) converges absolutely, if"ha | <1 and
conditionally if @ = 1, provided that x is\bhot a negative
integer ; (iii} is absolutely convergent if [m [px 1 or = | > 1

and converges conditionally if x =%

{iv} converges

sbsolutely if » > — % and conditionallgif % = — 33 (v) con-
veorges shsolutely if p > 1 and divergesdf p = 1 unless ¢ = 0.

21. If p > 1, prove that the series”
P\
N f
Z = cos —
n=1

is absolutely convergefib,
22. 1| z| < ngroire that the series
o

h 2yt g
N 2 ((?? :));f”“ sin (o + ")

N\
is absolaibely convergent.

23\*}1:&' what values of x is the series

i 1
:‘;’. z (—_22__ (tan #)2*

A=l
convergent ?

Ans. ke — ir <z S kv + }m, where k is any integer.

24. Show that the series
N R
iz convergent,
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25. Show that the series

§ nx {n 4+ 1) 1
0{1 + 2T T4 (n F Dt
W=

converges to zero for all values of .

o <
cos ne
26. Show that the series z SR s convergenl. A .
logn SO\
n=2 {
. e\
if § 2k, where % is an integer,
w N
sin ng

27. Prove that the series z nlogn co"}"?}:ﬁ%im‘ alil values
=g \J
of 8, \

28. H the sequence (u,) is monotoqﬁg\'decrea,si11g end con-
verges to zero, show that the series FuCos nd converges if 8 is
not a muitiple (including zero) Of 27, and that the series
2, sin n8 converges for all valugsof 6.

29. Prove that the series W\

R e e S e R E Er

i divergent. N
30. Prove that b{meries
AN @ ;
&\ in —
X a\ z €0s 1d sin -
O =1

s conviegens if @ + 2kn, where & is any integer except zero.

31,:\If;‘-for' positive integral velues of 7,
A\ .

7 __1.3.5...{2n——1)
R“""”"W-z

X 1 €03 18 -+ aycos (n — 2) 0 + ay008 (n — 4) 0 - . .
where g, = 1 ang

gy =L@~ M —1). . (-4 1) ,
L2,y G- —3). .  en—2 1+ D)
the last coofficient, when

7 is even, bei %3, show that
Gar < gy, and deduce that il

, if @isnot a multiple of =,
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L.3.65...2m—1) -2

5. 4.6...02n) |snd|
A
Wn.|sind|

whera A Is a constant independent of n.

{i) | Pafcos 8} | =

(if) | Pu{eos @) | <

'82. Tf the sequence (¢,) is monotonic decreasing and con-
vergas to zero, show that the series Zo., i8 convergent if the
serios Zut, is convergent or oscillates finitely. N

33. Discuss the convergence of the seriss whose nth terr\ﬁ"is\

vin L g i) (= o2

(i) ————

\ @

T SR
{iii} 5 B }"@:'(:

Vied 1) n+ 1
Ans, (i) Absolutely convergent if |2 ] <1 ;“i{dﬁditionally
convergent if » = — 1; (ii) conditionally ;convergent ; (i1}
absclutely convergent for all values of @.
34. Show that the series 7\
L mim — 1) mim — 1)(m —;2)\;
1" 21 3 OV U
(- ”“m(ﬂi?_:nl)‘ .n.q(m —n 4 1) T

L

is absolutely convergent if wh, > 0 ; and that the series

m | mim — 1) _aign — 1)im — 2)
1

L+ 7+~ iif\ 31 e
(V- —1). .. 0m— 1
“\\...mtm IRRL A A by,

converges\coriditionally if 0 > m > — L. _
Show,liyj‘nduction that the sum of # -+ 1 terms of the former

series, isd

AN m— 1 —2).. . —n
P T Es L L
&:&’ﬁd find its sum {o infinity when it converges.

» Ans, 0.

35. If the series Ju, is absolutely convergent, and the
sequence (r,) is bounded, prove that the series Zo,u, is
absolutely convergent.

-86. Ji the sequence {c,) is bounded, show that the series
Ze,a converges sbsolutoly for | x| < 1.
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37. If the series Zp¢, iz convergent, show that the series

Ze o in absclutely convergent for | x| = L.

38. If the series Ze,x" iz convergent whon a -
that it is absolutely convergent for x| < |« |-

39. By applying Maclaurin’s Integral Test show that the
geries

Wi show

=] ‘"\
S :
nt a4 1 ¢\
. n=1 S "
18 convergent. « \J
40. Show that the series N
@ '\\
z ¢, cos nd, A
n=0

where ¢, is the coefficient of z* in F(« o,e;;\y; x}, is absolutely
convergent if y — o — g > §; and ,t:h&t it converges if — 1

Xy -—o— 820, provided that #A\¥ 2m=, where m is any
mteger.

41. Bhow, by applying the rukg for multiplication of series,
that the square of the seriegny

1420 + 30 30 ok (n 4 Ber £ L
is equal to N\

22\
1+ 4o+ 1001 )
Whew—lgx§1

Moot e 1n 4 D Bt
42. Findpartial fractions for

x:\’": e+ a43).. . lat 2 — 1}
O ala+2), . (at 2n) ’
_ '@sﬁenee prove that, for — 1 < a0 <« 1,

1.3 @

/
& N

a1 tsg a———+4x’+...}
X{l—[—%x—[—%ﬁx’-l—‘..}
=142+l @+ a3,
+a+2x+mx —]—....

Express the vesult in terms of the hypergeometric function.
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EXAMPLES 2
Ans. Fd,da; 3o+ 1; 2) x F(§ 15 1; )
=F

(3o + 4 1; 3o + 1; =)
48, ¥f | x| < 1, show that

Z e Z (- Dt i

_— in -1*

[LPS ~Z z (e Y=t pemctin {

85

:”1\
n=1 m=1 4 N/
0w o
— — En—1)m
RHS. =% X (— L%
=1 m=1.\~\:\
Chamnge the order of summation ] \ ’
w\J
41, Prove that, if |« | < 1, 3(\,\
oo )
. ,Uz-n_l A s} pn-1
(1) m.an..z z (_ 1;? I — w«m-a’
LR 1 =1 ¢ ‘:"‘
N

i) z — 1=t +'m2': z (—

I + x!n -1"
45, Show that if d\ah < I,

B\
{1} z {" ]_)ﬂ—i

u;al/

M 8

xﬂ
=2 U ey

n=1

0
(2?‘& _ l}x““‘l qp2n=1 (1 + x‘n-ﬂ)
\(\ﬁ{) z 1 pint z T — Ay
=1

’15 Prove that, if |z | < 1,

o -]
n=1 n=1
oo o
I:L HS. = 2 z Th? = z ¢,2%, where ¢, is the number of
A=1m=1

p=1
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divigors of p, including 1 and p. Kach pair of unequal divisors
* and s such that rs = p ocours twice, onee when n = » and
- # =g and once when m = r and n — ¢ if r and ¢ are equal.
the pair cecurs only once. Again
2] =]

R.H.S. == z Z farln+m 1) + anln+my,

O\
a=1m=1

Here each pair r and ¢, if < &, oceurs twice, once with r &%
and 8§ =% +m — 1 and 0ncewithr=na,nds=n-ﬁ-m~;,
* = & the pair only ocours once with r — nand s — £m—1

when i = 1.] N
47. Show that, if & > Qor <« — 2, M'\"\,.
| 2 -8 N
1+x+(1+x)3+(1+m)a+"“_ zt

48. Use the binomial theorem o ﬁ.n.dﬁh'e cube Toot of 1030
a8 far as the 7th decimal place. .\

Ans.  10-0990163.
48. If | = | < 1, find the sumof the series
148+ 33a® i 4ha® 3 53t . . . .
Ans. (13 @)= — log (1 — ).
0. ¥ lx] <1, find the general term in the expansion of
x"\\ ~—-——1———-—.
¢ ’\‘ (1 —a)(1 —=9)
Ans. Toja =3{(— 1)" + 25 -+ 3}en. [Find partial frac-
tions and expand by the binomial theorem, ]
-51. Sho¥ thet, if = > — 3,

s == =V k8 & )a
’Q’f.a+3’) l+-x+£(l+w) +2.4(1+x T
AN 52, Find the sums of the infinite series
N\ M 1,1.3,1.3.5 1.3.5.7
7\ —_ ——
~O Wr+3ty5+5 5 3.6.95.127
\/ .t 2. 2.5 2.5.8

RN AR TR st ve  BERE

2 ,2.56,2.5.8 2.5.8.11

(’“)1+4+ZT"8+4.8.-12+4.8.12.16+‘"'
Ans. (i) v3; (i) ¥4; (i) 202
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53. SBhow that tho coefficient of #** in the expansion in

aseending powers of a of
) 1 —=
T +z+=

where | | < 1, id unity.

54, Show that the coefficient of x** in the expansion of

(1 - 22 (1 — =) -% in powers of z is 2n.

N

&
< (= 1y O
56. It w= z i+ 1{a4+2). . . (x+7) (’:f"
=il ¢
o &
K
_and — {— 1par XN
MI P I S VT RN =
show that \* :\\'
o
Y = z (— L .
LT+ 2) (T + D 2 (B F )

‘ o 2

where ¢, is the coofficient of :c"m ‘the expansion of {1 + :r:)“+3+"‘

™}

in ascending powers of .

56. Show that, for aQ\va.lués of &,
sm x? x*  a ot

:.!':26“’ %I—m+~—--——§.

57, Prove that’ ifginh x| < 1,

(l) Iﬁ§(1+smm]~—x—j+%s—

12

o4

%}) 10g,\/(l—t£uﬁ) et T E

21N ¥
\ 58 Show that, if el =1 < 3,
log(1 4+ e =log2 + E:v + -;-':c’ —
58. If cosh » <« 3, show that

10g(1—]—cosm}=‘log2-%-

1

5"

i

56"

-

z
7
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60. If cosh ¥ < 2, show thut

. x? 2t L.t
(1) logeogxr = — ST _.F_I_
oy s -
(i) sinctan z = + x‘ +360 e,
{iii) sectz = ] + oz éx‘-i--}r, N
6L. If cosh 2 < 2, show that

N

Oy
tan x = g + %x‘ + 'f'sxb + 115 ",:\\”“'
4

and deduce that the first term in the expansion of \ N/

' 4
A
tan {sin x) — sin (tan x) is oy t :

62. Prove that, if sinh | x | <2|x|

L}

eos (a: 3“—l 2 E
“(anz) =18 - 3o
63. Show that, 1fix| < log, 2, \

ta.n(&w-]—:r} 1 +2w4:2:c2 +fas L.
6. ITmise positive mteget, ahd

\

) = 5_‘ z

show that {."\\
X € N\ ™M+l
() = -—_ e
(‘\\— & e 1 m I
65. Proves th&t
\¥/
‘i ‘L' log (1 Tz — x(l + o) s 1
el eos @ — (1 27 BRELY
O b2 ] ( t J
§66 If the sequence (,) converges to a limit !, and if
z? b, I8 & divergent series of positive terms, prove that
s Blle sequence (), where
O\NI U T ' thaua L L L b,
) n b0+ T T,

also converges to 7,

[CF. pages 279, Example o0.]
67. Show that

sin6‘+sing+ ce. +sinf

B ——— =0

1
n
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CHAPTER XIX
UNTFORM CONVERGENCE

§ 1. Uniform Convergence

Ir.the series Zu,{x), in which the terma are functions of. :r‘)““
is convergent for @ < x < b, its sum defines a funotion
Bi(x) in that interval. If the series contains a finite gl&{:nber
of terms only ; that is, if 2 \ I

- N
e

the sum possesses the following propérties :

{1} if all the functions u,(z) are &ohtinuous in (a, b), S(x)
I8 continuous in (a, b); RS

(ii) the integral of the sq@:is"the sum of the integrals;

that is A\

b N, ,
J S(de = > j u,(x)dx ;
G\’\:\.} =1 “

(iif} if each ¢fythe functions w,(x) possesses a derivative

at a point % 0 (a, b), so does S(x), and
::\'“: L
Q" S'2) = 7 w,(@);
rti;atﬁ is, the derivative of the sum is the sum of the deriva-
tives.

It does not necessarily follow that these properties still
hold when the series contains an infinite number of terms.
Conditions subject to which these theorems are valid will
now be established.

389
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Uniformly Convergent Nequenees — A\ seyuenc {2,(2)}
which converges, for all values of » in an interval (q, b, to
the Limit I(z), is said to be uniformly consergent in that
interval jf, corresponding to any assigned pusitive number
¢, however smali, o positive integer m can be found such
that, if n > m,

fuﬂ(x)—-l(x)iﬁs N o
(\D
for all values of x in the interval.- e\
Note—If the Sequence is convergent in (g, b), then for
any vparticular value of z in (@, b) an integer &g can be
found ¢o correspond to ¢; but for different vafiles of  in
(e, b) the values of m which correspond {0 e biny be different.
The convergence is only uniform in (@, B3 corr esponding
%o any assigned ¢, an integer mm can befdwnd which applies
for every value of g in {a, &). AV

Hzample 1.~—Show that if, for a1l Rositive integral values of n,
B -\ Iy
the sequence fu,(z)) in convq;éént in the open interval (0, 1);

»

but it does not converge wniformly in that interval.

It A0 <z <1,
.im.’\u @ = 1 — g
\\ " 1l -z
N\ 1
d O -
an \ Hzx) =%
Thus () — =
us :'\ f H,,(.’L‘} l(x) J i1z

y '\§¢
. I§\<is assigned, and g is a fixed point in the interval, an
migeg\ar ™ ¢an always be found such that

&«
NS

Ny xm
£ ) T o < e
a \ 1l —

\3

or 1 1

zm > €l —zy

1 1
or =
™ >l°g{qr:;} [108 ().
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As s tends to 1, thie expression on the right tends to infinity.
Thus ne value of w0 can be found such that | u,(z) — Hz) | < «
for ull values of x in the open interval (0, '1). Hence
the sequence, though convergent in that interval, is not uni-
Jformiy convergent in the interval, :

Feample 2,—T1, for all positive integral values of »,

1 1
R e Y B \

+ 1 ¢ \J
R O I NI
show that the scquence {u,(x)} is uniformly convergentforg > 0,

Ua (%)

-1 1 1 ¢
ﬂ"'{x)_5+x—é—'.l+"'+x—}-n~—.}_
NN SRS SRR \\. M
Twtl 2zt ANV Tz dn
1 1 L&
:-95 T N
Hene <
eneo Z{x{?x,
and - l{"’.:'— ! 1
nd L) — M T = 55 <

Now choose m =0 ]a,(gé that m > Lfe; then, fn=m,
@(-’5) —Hz)| <& >0

Exomple 3.-£1f the sequence (u,) is convergent in the closed
interval {a, ¥}?2fld is uniformly convergent in the open interval
(¢, b), prove~that it is uniformly convergent in the closed
interval/{s,”6). ) :

Let{m* correspond to ¢ for @ < 2 < b, and let m, and m,
cor %p“ond to ¢ for x == a and » = b respectively. Then
the\groatest of m', m,, m, corresponds to ¢ for @ S 2 b

o) Uniformly Convergent Series—The series
Bun(z) = @) + 2@ + us@) + - - -

is said to be uniformly convergent in an interval (a, b) if
the sequence {8,(x)}, where §,(%) is the sum of the first »
terms of the series, is uniformly convergent in that interval.
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That is to say, if Biz) is the sum of the serivs, and
Ry (2) == 8(x) — 8,(2),

the series is uniformly convergent in (a, b} if, corresponding
to any assigned positive number e, however small, u positive
- intoger m can be found such that, if # = s,

| R,,{x) | < €, A o
2\N
for every value of z in (a, b). NS ¢
Example 4,—Show that the serips 1 + = + 2 —|—(z:‘3f’q|- e
is eonvergent, but not uniformly convergent, iybhd open
interval (0, I). LV

Emam_mle 5.—8how that the series

1 I ~N e
AN et Eige syt
is uniformly convergent for ail valugs of 7 except » = (.

Example 6.—Show that the seridg y

1 + 2 '.
R RNCES e

" 3 4
+(f€r3)(=v+6)+(x+6)fx+10‘)+'"

is uniformly com{er,%hut forz = 0,

uniform cohwergence ig closed, that is, < @ < b. This
18 & conwenient, though not, a necessary, assumption.

;[:ﬁdi%EM L—TIf all the terms of the series

o
~O° S@) = 3 w,(a),
\ #i=1
which is uniformly tonvergent in a closed interval {a, b},

are continuous in that interval, the sum B(z) is continucus
in the interval,
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For, let 2, be any point of the interval and a a neighbour-
ing point (of the interval). Then, corresponding to any
agsigmed ¢, & positive integer m can be found such thas, if
B = m,

| Sta) — Sulay) | <de, | 8@) —S,@) | <de

Now fix on one such value of ». Then, since S, (x) is the
sum of n continuous functions, it is itself a contmuoua\
function. Thus, corresponding to the assigned ¢, a posﬂqve
number 4 can be found such that, if |& — x| < 7oy

£ N
S 3

1 Swz{x) - S'n(xl) | < %G. . D

Henee, if [0 — 2, | < 9, .'“3\\
| S(:’f — S(xﬁ ] :
— | {8() — 8,0} — {5620) — 8,0} 2ABule) — ol |

§|S(x)—San+ISx1) —Sﬂ~941).l+ISﬂw}— a(@) |
< €.

Thus S( ) is continuous at """1’ any point of {m, ). There-
fore 8(x) is eontinuous in (a,

Ezarple T—Show that “the series

”~ \1:9‘ x?
" 'b\‘l. e s g
is convergent ok a real values of x, but that it is not uniformly
convergent in any interval centaining the point x = 0.

Ho + 0 the series is a convergent geometrical progression
with sum LA #%.  If # = 0 each term had the value zero and
theref o{the sum is zero. Thus the sum S({z} is discontinuous
at 2\=4 ; and, consequently, the series cannot be uniformfy
GOn'\sz‘gent in an intervel eontaining x = 0.

Emmple 8.—Bhow that the series

D (1 —2) + (@ — %) + (a* — %) +.
converges at afl points of the closed interval (0 l), but that

it does not converge uniformly in that interval.
Ezxample 9.—8how that the series

x4 we T - w4+ e ...

is convergent but not uniformly cenvergent for 0 < =,
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o
Hrample 10.—Show that the sories z —'=:-. I8 con-
[ P

=1
vergent but not uniformly convergent in any inlorval con-
taining x = 0. [0f. Ch. XVIII, § 3, Example 6. |

THEOREM II.—If & and 8 are any points in a closed. &N
interval (e, b) in which the series *

Oy
[} :"\\ ”
N/
Siz) = z %, () N\
=1 ~. $
o {C
converges uniformly, the geries A
. o
A A
S [ u@ar Y
ro1 o Q..x\

. 8 4
converges to the gum j S(z)dz.a

»

& 3
In the first place, assumenthat ¢ << 8. Then since, at
all points of the hiterval J3%

18(2)£8,2) | <6, nm,
for any such valﬁe\{;}"'n
B :...:'../\ g 8
_[ S{)dat s j 4 (x)d

%
-3 o

::‘i“’ r=1
"\§~

i“/ ﬁ
\\\ < j | S(z) — 8,(2) | dx

=[] ) — s,

2NN B
N\ < I edy = e(f — o) = e(b — a).

&
- Bub (b — 0) can be chosen as small as we please. Henco

. . 8.
the series of Integrals converges to the sum I S{x)dx.
° &€

* It is assumed thyt each function Ua(x} is continuous in {a, B).
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fae=>p

n

r S(:t:)dx > r u{x)dx l

x
* r=1

n

— i j: S(zde — > J; u(x)dx

r=1

< e(b - ﬂ’):

so that the result holds in this case also. O
Moreover, the serics of functions of =, .

(28] .
z T . : ;.‘
(i) N 2
n=1 # . &
converges uniformly in {, ). For, if n =2m

H dx——Zj u,z)dm}\qe(b_a}

for all values of z in the mterval
TraeEorEM III.—If the senes“ N

S{x) Z 2t
,\ a=1
ia convergent mg\ciosed interval (¢, ») and if the series

2w’ (%) is unifernily convergent in that interval, S(z} pos-
sesses & deriyative $'(z), and
N/
,\: 4 §7(x) == 2up().
F({"}Jy Theorem I, if  and z are points of (a, b), and if
‘x; ( ) = Zu'q{#),
,.\‘;;
P [ Pt = ) + we) + ) + -
— gy {or) — uafer) — uglx} — -
= 8(x) — S(a);
or 8(x) = J ’ Fizjde + S{a}.

* It is assumed that each function w,(x) is continuous in (4, ).



396 TRIGONOMETRY [om, x1x
But the RH.S. has a derivative Fiay: hence
§'(») = Fiz) ~ RXRES)
The Partigl Remainder *—_Ty the definition of uniform
convergence the condition

[Bux) | < e, = = m,

may be replaced by the condition KeN
bRa@} [ <, n2m, po1 23 - O

The equivalence of the two conditions mdg\’b& eatab-
lished as follows, »

In the first place, Iet it be given that \\

Ny

| Bo(@) | < }e, n = N
. x.\\J
Then, If'p-_l 2,8, . \\
] R‘n(x) f = J Sﬂ-l-.’p(x) -8 (x) I""x

=| {8(x) — § (w) 1 =8 — 8, @)}
= i R‘n{x

< | Ry x)|+r 2| <
In the next Place, let it be given that
],,Rﬂ(x}|< "\'ném =123,
where € < e ‘\w

Then 5 N R - £,,Rﬂ(a:),

... ./

Pco
and therefqre
Q\ | By(z) = ¢ <e
Qample 11.—Show that the series
[+n]
X\ . cod ng .. Bin né
’\Q\' {i} ;T’ {ii) ZT

\/
converge uniformly in the interval o <4 < 9, _ %, where
@ 18 & small pOSltIVB numher.

* CF. Ch. XVINT, g 2,
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For (i}, a= in Example 1 of Chapter XVIIL, § 5,

1 < 1
(n+ 1} |eindf| = (n 4+ Lsin o
if x <8 = 2r — a. Now choose m so large that

1
{m + 1)sin 4 <

| Bul) | 2

Then; if = = m,

| Ba ()] < €3 ¢ \J
. NS T
and, consequently, the series is uniformly convergent in'the
intervel {(«, 27 — a). £
The uniform convergence of (ii) can be establighgd it the
SAIMNE INANNer. &V
Exzample 12.—Prove that the series \J
1 —cos 28  cos 28 — cos 48 | cos 4§ —c08'6d
- 4
1 3 ]
NN .
gonverges uniformly in any interval. \Beduce thab the series
su; g + sm339+ Eiiﬂ{;?ﬂ“q_ .

A
converges uniformly in the interval = = f = n—a, where
0 <o < fm SN\

Example 13.—If eachreldment of the sequence {u,(%)} is con-
tinuous in the closedsimiterval (4, ), and if the sequence con-
verges uniformly iughat interval to the limit s(x), prove that
the function s{z)is tontinuous in the interval.

Esample 14>, in Bxemple 13, « and 2 are any points of
(@, &), and @B\

X’\”. )
o) = [Cuwrde, =123 ...,

o’ -3

N,
#

show that the sequence {v,(z)} converges uniformly in (@, b) to
the limit

5:8{.‘1’? .

Ezample 15.—1Tf the sequence {u,(x)} i convergent and the
goquence {u' ()} uniformly convergent in (@, b), prove that
8(z) possesses a derivative s'{x) and that (%) is the limit of
Wa(@)) in (@, B).
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§ 2. Weierstrass’s M-Test
1f, corresponding to a given serieg Zu,(x), a convergent
series of positive numbers ZM, can be found such that,
for all values of 7 ang for @ < x < 5, | 0,(x) | =2 M., the

series Zu,(x) is absolutely and uniformly convergent in
the closed interva] (a, b),

For, since M, is convergent, a positive integer m calt |
be found such that, if n = i, (\)
O\
M"+I+Mn+2+‘ . ‘+Mn+p < e, P = -[:2: 3’3;.'\""
Hence, if ¢ < o =b, "

[ Ra() | = | %gl) | + | () | 4. . ‘17“4:“:?;'-17(9‘:) fl
SM, M, Y4 M, << e
Ezample 1 -8how that the series , :1\\“
T a0 \ -
[EREF-Rar X,

N/

7
<

tonverges absolutely and unif@fmfs; in the closed interval
(=1, 1I). [TakeM, — n-2] o

Ezample 2.1t fr] < 1,' S*HQ}V that
' - 8 sin flp’ -
.[u 1 — 28088 2= 7108 (1 +1).
[8ee Ch. X177, ,g:%;\Ex&mple 3 (). Take M, = | # |n]
Example 3.—-—BQve that the sum of the Beries

» 1 m
"\ 29
PN B+z 8% — pE 2
N -

is a ¢ontinuous function of
wh ‘9’3:0,:{:],;&2,..

et m be 8y positive integer, and assume that
—™Mmr 5§ m,

# except at the points # = nm,

e N
N Then, if ¢ >,
3
\, |E:|:?‘1r]'g'rw——fﬂlg(?—-m)w.
Hence
T m X
T T T T

d
[ 8 " pr
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But the series

o o
b He 1
z (r—m)*w_?r'z;t?"
r=m+1 #=1

where » = r — m, iz a convergent series of positive terms.

Hence the series
a0
d A\
2 o

r=m+1 N

N/
convergos absolutely and uniformly for | 8| Seamr It
therefore represents a continuous function of 8 insthe vlosed
mmterval (— mw, mumr). ’\\

Thus the function )

[

o0

28 N

+ Z 92 —_ ?‘311'5.‘:\\“
r=1

W

) ¢ 3
is & continuous funetion of 8 in hat interval, except when

d=nm n=0, £1, +2, ... £m’ But, for any value.of §,
# can be chosen so large thapw|8 ] = mr Hence the result
holds for all values of . &0®

Ezxample 4 ~—Prove thatfbh:a' sum of the series

o e o0
i+ 2 (O )+ 2 )
a=15% N\, n=1

is & continugds, function of @ except at the points & = nm,
wheren =) 1, +2, ...
¥

Eza lé 5.—1f wfx) = atfnt for — 1 <& < 1, and if
(@) =P for = + 1, show that the serids Zu,{x) converges
?m%;mly in the open interval (o, &), bub not in the closed
intecval (a, b).
§ 3. Power Series '
~ Let R be the radius of convergence of the power series
o = qg + ot + a2+ . -
Then (Ch. XVIIL, § 4), if 0 < R, <R, the serics

|0‘»ul—I—]a_1|.R1+Iag|.R12+|a,|.R13—i—...
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is a convergent series of positive terms, I_-Ien_ce, by
Weierstrass’s M-Test, Za an is absolutely and uniformly
convergent in the closed interval { - Ry, R} _

Note—Ifz, is any value of x in the open interval {—R,R};
that is, if fay < R, R, can be chosen =0 that

|7 | <R < R:

thus x, can always be included in an interval of uniform, *
convergence. N\

N
The following three corollaries follow from Thr:gi;ctﬁs 1,
IT and 11T of § 1. !

CorROLLARY Y —Tf | %] < R the function ) wQf(:hj = Zax"
is continuous at g i that is, S(2) is contimiels in the open
Cinterval (— R, B O
CoroLrary IT —1f |z | <R, O
. o
I S(z) dx < G + ar N 4. L
0 2. N3

that is, the integral of the aum"i'é' the sum of the integrals
of the terms, \y

Comorrany 11135 | a:{j«": R, S(x) possesses a derivative
8'(x), and e
S'(z) = g, j-;"g}zx + 3ap? 4 daad 4, ;

that is, the deriv}u\re of the sum is the sum of the deriva-
-bives of the texpis.

For the la&t series has the same radiug of convergence as

na,
(n Da,,,

T

Za,xn, sm@
\\ & £ £ a
’\ L] — 0
Hence z can always be included in an interval of uniform
(\; convergence (. Ry, Ry) of the serieg of derivatives.

Brample 1, —Shoy that the serjes 1 +x a4, ..
COnVergos uniformly in the closed intervaj {— R, R), where
<R <1, Bhow also that the series

1+2w+3:v3+4cc3+...
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converges uniformly in the same interval, and that its Sum is
(1 — &) -

FKrample 2.—Bhow that the series for exp{w) converges
uniformly in the closed interval (— R, R}, where R is any
poszitive number. Deduce that, for all values of z,

D exp {x) = exp(z).
Exgmple 3.~-If — 1 = x < 1, integrate the expansions

1 'S
=1 —= 2. P {
T+ # l—a+a @+ s K \
[ Y ’\“I
— = ] - gt ¢ o N\
g L —zf ot —a . .., N
over the range (0, x), and show that '\\

@ _#

xS
iog(l-}-x)=m———}—3 3

- v AW <,

@ @ @ I
tan-_1x=x——3—+g—-?-;jtv v ay

where je{ <1, [tan?af< g
«a3

Example 4—T1f — 1 <& < 1y show that

1

"%6;?':(;0:—[*1,13-}—1; y+ 1; x).

<\
Example 5.—1If | r {’%\ 1, prove that

N\ 0
i \— g ™ eoand
{i) lo.gz('}: 2y cos ¢ 4 r?} 22 2 cos nd,

#a=1

4.
a8 v @)

V4
AN

L ) : o

»(ii}t&n'l(—r sin § ) = z = sin nd,
U I —rcosd %

NS

whiare the inverse tangent has its principal value (Ch. IV, § 2).

For (i} integrate equation (iv) of Example 3, Ch. XVIII,

§'4, with regard to r. For (i} divide eguation (i) of the

same example by  before integrating.}

Example 6.—If 0 < § < =, show that
z 9
cos 1
log (coser f) = z {cos f)r — —

n=l
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Hrample 7—1f — Ln < gin-12 « 4=, show that
; 1.3 af 1.3.8a7
Blnl”=x+'§+2 i35 T3 a7
[Integrate the equation

1. Bl e I

3 -
2,467 7 0 LN

‘in which | # | < 1, from 0 to z. See also § 4, Example 4] \
Erample 8.~1f — }n < gin-12 « 4m, show that

L L1, 1,
Ve el S Gl

i
N\

a}(sm-lw)2=——+2——+2’ 4=—~+

,nK

{The series for sin-! z and 1 [Vl — ) convé{ge absolutely
if || < 1. Thus, if Jlx) = sin-12f (1 ~*, there is an

expansion
o0 \J
0\ o
fla)y =3 Aansy 204,
n=0 N

convergent for | < 1. On dlﬁerentlatmg this equation
2 4+ 1 times and putting xz = 0~We find that

. Fen1(0) = aﬂ'n+1 (2r 4 1)1
Now 4/ (2 ——?o&)f(x) = gin-lg

end this, on dlﬁerentla.gon gives

2 1
4 (1 — x\kf'(@ Wf(x) VI — =
or y (1~ /@) — 2 f(z) — 1.
Next, du’{e;‘entlate this equation n times, applying Leibnitz’s
Theore: 9,
Thu_sg"s{l — &%) fi 0 () — (20 4+ Dz fimH ) — m2 flo-){g)
amk ‘erefore
‘w f(n-+1) (0) — n!f(ﬂ-l) (0)
" " But (0} = o, F10} =1; hence, if n is even, f{=)(0) =0,
\; wh
Vo FE=00) = (2n)2 (20 — 23, . 28,

It follows that

]
sintafy/(l -2y = £ 2L 4+ 22.42% NI
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and from this the required formula can be deduced by in-
tegrating from 0 to z.  See also § 4, Example 4.]

§ 4. Abel's Theorem
If the series
-+ @ + ag@? + .
converges for — P < £ 1, it is un]formly convergent in
the closed interval (0, 1).
For, since the series Za,, is convergent, & positive mteg&r
m can be found such that, if n = m, X O
— € <lpy F Gzt oo T Bap < 53“("""
where 3 = 1, 2, 3, R4
Kow,if0 =2 4 1 a:“ does not increase &g 1 mcrea.ses H
henee, by Abel's Inequahty,

w\J :
— el o, 2ot Log, ettt 4L .¢\—1~,}zn+pa:“+i’ = exttl;

or, smceogxﬂﬂg_l, PN
— ¢ = g, 2"t a, sz"“rf: s By AP = e,
where n == m, p—123,.;’;.' and 0 =z = 1.

Thus the series eonverges.umformly in the closed interval
(0, 1).

If Sz} is the Slllll\of the geries, it follows that S{z) is
continuous for e<h% z £ 1; or, that S(z) tends to S(1)
&s x tends to 1, f m the left

COROLLARY = R <z =R,
it convergegtaniformly in \ the oclosed interval (0, R). This
extensiéhof Abel’s Theorem can be deduced from the
theerém “as stated above by means of the substituticn

%R the resulting scries in £ converges for—1<¢{=1L
.Slmﬂarly, if the series converges for — R = # < R, it con-
Jwerges uniformly in the closed interval (— R, O} This is
deduced by means of the substitution x = — {R. -

Ezample 1.—Show that the expansion

B gt
10g(1+m)=x—%+§—
isvalidfor — 1 <« 2 2 1.
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in Exampls 3, § 3, the ex
— < <l

[ow, x1%

pansion wus oskablished for
But the series co

nveorges when .« -2 1, Henes,
by Abel's Theorem, the sum is continuais wl @ —= 1, and is
thersfore equal to £ log (1 4+ #). Thus
z—»1
log2 =1 — 3 +4—34... . A
Example 2.—Show that the expansion A
¢\
5 o
ta,n-lx:f-—% %— :N\;
s valid for — 1 2251, —{in Zten'x = L\ Deduce
that }

.«\'\'
T XN
fi-_-'}-_éki_%_”” )

Buample 3.—~Prove that, if 8 + 2km, F90, L 1, 2, . . .,

o PN
. [ 8 N\ .
Y —"in”’_=-‘{9gjzsmg.eg,

o LN
o sin mdey
{i) > s, = tan~ (cot 1),
r=1

NS
$

n=1

where the inverse t&r@nt has its

rincipal value.
From (ii) deduce{tfﬁt p P
y gln 7
(i) g\s e =Hr—8), 0<6<on
OnEl
N R /oo
250  tynog 8D nd_
:“\':"fw} z (-1 Th =3 —m<d<m

\Jo a=1

\Ell @ SeTies given in § 3, Example 5, are convergent for r = 1,
‘:pr,owded that ¢ + 2pr, Let r - 1and apply Abel’s Theorem.]
”\:\, Bxample 4.~—8how th

: : at, in Examples 7, 8 of § 3, the ex-
\/  Pensions are valid for — 4 < sin-1z < 1r and deducs that

T LY b

] s

; 11 1.3 1 1.3.5 1
(i} g=1421 1,1.3 LI

2 *3 3+2-4'5+2.4.6'7+"'-’
() Tl 2 24 9 g

8 3
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§ 5. Identities

The two following theorems are required in the proofs of
various trigonometrical expansions.
TurorkM 1 —If the series

d(z) = 0y + aF + a@? + agt + . .

is convergent for — R << < R, and if the function 95'(;1:)~
vanishes for every value of z in the interval, the sefies.
vanishes idensically; that is to say, all the coefficients
@4, Gy, @9, - - . have the value zero. )
From the given expansion ¢{0) = g,; but {(Q) has the
value zero ; hence ay = 0. Q)
Again, since ¢(z) = 0 for — R <<z < R\t follows that
) =0for — R <z <R Baut in :ﬂk'same interval,
i R .
$'(2) = @, + 2a,x + Bapt R A .. ..
Therefore ¢, = 0. R\
Similarly, by differentiating repeatedly and putting
% =0 it can be shown that' all the coefficienta vanish.
Treorem IL-—If the séries
$(x) = agﬁ-,\al:c + gz a4+ ...,
) =BT by + b + bt + - -
are hoth co;w’g:rgent for — R < & < R, and if the functions

${x) and ) are equal for all values of z in the interval,
the se:;'\ii:s"a,re identically equal; that is

\\ a,=b,, »=0123 ....

.\ﬂ"For, since the function {p{x) — $(x)} vanishes for all
values of x in the interval, the series

[=a)
z (an - b\n)xn
n=0 I

vanishes identically.
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Example 1-—If n is a positive integer, show that

2 cos nf = (2 vos f)n — % {2 cos Byu-2 4 “—(";I_ B9 qos a2

_'_(_])ﬂn(n —p=lin—p—9 .p. !. {(n —2p | 1%2 cos §jr-tr

4. ... Q
If | r| < 1(Example 3 (iii), § 4, Ch. XVII, p t\:\"
N Sl I + 2r cos 8 + 2% cos 24 O
1 — 2rcos d + 52 L

+ 213 cos dﬁéf—ﬂ Cee

Naw, if | 7 | is so small that [ 2reos 8 —r2| < K{tﬁa L.H.S.
can be expanded in the form O
o]
1— 9 \
[=oreonsgra=(—m™ 3 (2epso - oy
n=0..\ v
and {Ch. XVIIL'§T) rearranged iph i)dwers of r. The co-
efficients of +* in the two safies can“then, by Theorer II, be
equated, so giving ™

2008 nd = (2 cog o — ?—’?rl{\é;éos gyn-2
+ {_________n A 22)(‘:?' — 3){2 cos §)n

O 8)(n — 4t

—

— 5)(2 cos 8"t + . . .

3!
N —(2cos gymr 4 o % (2 cos g)7—
‘si::\./ _ {n — 42)(:4 = 5) {2 cos 3 i
i@?ﬁos g — I”LI {2 cos g)n—2 4 ”‘(_”2;_3)(2 cos #)n-¢
O ' '
N - s g}n(n =5 (Zeosf)m 4. . ..
) .
NN Brample 2.—~1f 1 is a positive integer, show that
N/ ... sinng —
{i} i (2 coz gjn-1 L T 2(2 cog §n-3

+ gﬁ-_—%&ﬂ)(fl cos §jn-5
. ‘i:_i)_(%___—!mf%;@(geos 6)"~T . . .
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, i - 1)8 .
i =TI 1 " Do

+ in — l)ﬂ(%;l_ L)(n + 2) (2 sin §)t — R

[Emuloy {ii) and {v) of Example 8, Ch. XVIII, § 4.]

§ 6, Linear Differential Equations of the Second Order

Varions expansions for trigonometrical functions pgﬁﬁ",
be established by transforming the differential equations
which they satisfy and solving the transformed equations
In series, * O

Two solutions of a differential equation age\said to be
linearly independent if their quotient is not 3edhstant.

The following theorem holds for all lieat equations of
the second order. LV

TrEeorEM.—If , and y, are lingaply independent solu-

3

ticns of the equation R
Fy A
%y, 4% — 0,
P da? qux =t

where p, g, r are funet.i\dﬁs of z, any other solution ¥ can be
expressed in the form) '

\
Ny = Ay + By,

where A a,nd\B are constantg, not both zero.

Tt is sufficient for our purpose to prove this theorem for
the equafion _

Q& y' gy +ry=0 . . - (D

fwhich ¢ and 7 are continuous near x = 0, and o confine
ourselves to the case in which the three solutions can be
expressed as series of positive integral powers of @, con-
vergent for | o | < k, where k is a constant.
The theorem then follows from the two following lemmas :
LeMma I—If a solution y(x) of (1) and its first derivative
y'(x) vanish when x = 0, it vanishes identically.
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For, if 4(0) =0 and y'(0) — 0, the equation gives 4//(0) = 0.

Similarly, on differentiating the equation repeatedly, we

find that 3'(0) = 0, ' (0} =0, and o0 on. Hence, if

o
¥y= z anx™,
#=0
the coefficients g,, s, @y, . . . are all zero, and the solutioh
vanishes identically. O

Lemma IT—1If g, o, ¥3 are solutions of the cqu,é.‘tfbn 1)
which do not vanish identically, a relation of the\orm

¢
O + €Yy + gy = ON )

exists, where ¢, c,, s are constants, not more than one
being zero. O
For ¢, ¢,, ¢y can always be ché's}n to satisfy the two
equations * O
G¥(0) + exy(O)SH 049,(0) = 0,
Citir (0} + cogglf0) + e49,'(0) = 0,
and therefore, by Iemxﬁé'i,
vanishes identically{"
The theorem {{h,how be established. From Lemma I,

the solution ¢y, + eyps + st/

O Y = eyih + oy,

not morézthan one of the constants ¢, ¢, ¢, being zero.

But ¢ gahnbt be zero, as % and y, are linearly independent.
Henge

NS y= A?fl + Byzs
A=cfe, B= cgfe.

*IE 51(0), ¥:(0), 4(0) are all zero, or if y'1(0), ¥'4(0), y'5(0) are all
Zero, any values of 1s €1, € which satisfy the remaining egnation
will do. If the ratios y'(0)fy,{0), 200} fyr5(0), ¥l 0) i (0) are. all
equal, 8oy values ¢, Cas &3 which satisfy one equation will satisfly

the other. ©1 %, €3 can be found from the

t In all other cases,
equations. . ’
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As an illustration -of the method, consider the equation
&y 2 . .
Tiay=0, . . . @

of which cosne and sinznz are independent solutions.
Put == sin2%, and transform the equation so that u
becomes the independent variable. Then

dy dy \'

T du 2 gin » cos %, \ O

and “'( N
ary dﬂg dy R&%

e 5 (2 sin x cos ) + d 2(cos? A ;émz x)

d
=d—§4u{1 w) + dy 21 — m,'

so that equation (2) becomes \ “
ufl — v +(§“ u)di’ Py —0. . ()

This equation will fow be golved in series of powers of
%. Assume thap {he;'e is & convergent series '

4]
y=wyoew . . . @
{ v=0
x'\"'
which éa.tmﬁes the equation. As the series is convergent,
it @ “be differentiated term by term, and consequently

N
) d
N &g—uﬂ-lzc(p+v}u’
and v
d2y <
5= w23 olp+ e v — 1

v=0
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When these series and (4) are substituted in {3), that
equation becomes

. o 2]
W2 ol +W)lptr— 1w —w T 6 {(p+ v — jutjur=0.
v=0 v=0
In order that this equation may be satisfied, the cos
efficienta of all the powers of % in it must vanish ; thus the .

equations PR N
eplp — 3) =0, . N {8}
and N
Gaule+v+ Dip+v+ 8 =cfp+ V)z\ﬁ'.i*?ﬁ}, (6)
where v=0, 1, 2, 3, . .., must all hésatisfied. The
equations {6) will all be satisfied if the\coe:[ﬁeient-s ¢, are
connected by the equations \s\ y
_ {p +v)? g:ina 7
i1 =6 ) y e - {0
_ p+v+Diptv+ )
where v =0,1,2,3, . ... 0%

The Indicial Hquation.—As c,, being the coefficient of
the first term in (4), doesmot vanish, equation (5) is satis-
fied only if p =0 ar{g==1. These values of p give the
only two possible, ifidices of the lowest power of % in (4).
For this reason squation (5) is called the Indicial Equation.

There are then two cases to be congidered, corresponding
to the two £9ts of the indicial equation.

CASE. ;QfLet p=0; then

b — o VA0 (n e v(—dn )
th\c: e DT Give Dy
o
\/ ¥= Cu{l + {%n)%(——:iﬁu
@m)n + 1~ fn)(— e + 1)
+ 13,31 u2—|—-...}

= 6F(ln, —4n; §; w. (8)
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Case I1.—Let p = }; then

e () (5 )
G =0T ) @R +D
s0 that .
{ 14+ny/1—mn
B Y )
{ 2.8.2! M'\w+-...

— (12, L\;;’f 130 O

As the serieg in (8} and (9) botlg.igin}l{rérge absolutely for
— 1 < % < 1, the solutions (8) 4nd (9) are valid for that
range. N _ :
Now these solutions arelinearly independens. They
therefore give two linearly indcpendent solutions of (2).
As u = sin?x, they cam be expanded in powers of x; this
is also true for sin i and cos nr. Hence
sinnz = CFHAT §n; 35 sin®a)

. + Dgin xF(——I + n, 1- n; Ea sin?'x).
PZ, 2 2 -
In Ol‘ﬁér.to find the values of C and D we assume that
\W
— 3¢ 2 < }m, so fixing a range of z for which | #| <1

0}1 putting # = 0 it is seen that C = 0. In order to deter-
\rine D, divide the equation by sinz, and let = tend to
" Zero.

Thus # = D, and therefore

sinm:nainx]"j‘(l—%-—n, 1__2.-_?_3' %;sinﬂx), (10}

where — 17 < =< ln, as the series converges for sinfx = 1.
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Again
cosnr =KF(jn, —in; }; sin?a)
+LsinzF(1_+2_n, -I—;—n, i sin”x),

where K and L are constants. To determine these put Q
# =0and get 1 =K. Next assume that — i< ® <'%\'ﬂ'\'
and differentiate the equation. Thus "N

£ 3

N
—nsinne = 2sinxcosz X {a convergent serics inlgin? z}

+LcosxF(1 —;—n, 1 ; . L sinax‘)\\’

L. 2sin?x cosx X {a convergent series in sin x},
g ’\ v 4
$

from which, on putting 2 = 0, we ﬁr}d&ﬁhb L =10. Hence
cosns =Fldn, —In; }; eint A fr < @ < r (1)

On differentiating (10) and (M) term by term, it is found
that N

3

14 n wo n

cosnx:cosxF( %\\ 5 1. sjnzx),
e —br <o <im (12)
and \\
5N 0% = n‘s@igﬁ"cos zF(1 -+ in, 1 — In; #; sin?zx),
Y —r<z<is (13)

o &/ .
Brample 1—By equating the coefficients of 7% and #* in
fm:‘@‘ ® {10) and (11) respectively, show that, if

N

NS —ir £ @ 5 }n
m\',,/ - 1 i 5 5
\: 1) & — sin 8in? . 3&inf ¢ 1 st x .
@ B e e e e ’

2% 4

i 1 . 2
(if) §$==§—!sm3w+%sin‘w+ 1 2:ainl“x—l—- .

.+ [Of- § 3, Examples 7, 8]
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Exumple 2.—8how that _
@) sin (3=z) =xF(1 erx 1_;_‘”; 1),
{ii) cos (bow) = F(de, — d2; 13 1),
{iii) cos (3ma) = F(x, —w: ks §1§)’

o V3 o1 .
{iv} ~1n(-}7rx)———2-9:F(1+93,1 %5 53 29), e
o 1.3 1 O

M-t itigg(ts)

1.8.5 IR N
+']7"2‘4.6(1+§_t{’; T

[For (i) and (ii) put 3= for » and = for n JX10) and (11};
for (iii) and {iv) put }= for & and 2z for mnin {11} and (13) 3
for {v) equate the coefficients of @® in ()0 o

\ 3
A\

EXAMPLES\ XIX -
@ , 3 . _ .
1. Show that the series z':x'(l — a7 is convergent, buf not
=0 s

uniformly convergent,{for 0 < = < 2. Is there any interval '
of uniform converge;n‘ée\? Show that the sum is discontinuous
8t tho origin, butithat’term by term integration in (0, 1) leads
to a correct result. .

Ans. Fora'="0 the sum is 0; for 0 < < 2 the sumis 1,
The serieshoGaverges uniformly for « < » < 2 — «, Where
0 <e <l
2.\smiv that the series
N ®
& :; £ .

N Z(1+m}{1+(n+1):v}
v %=0 '

is convergent for all values of «, but thab it does not converge
uniformly in the interval 0 < x < 1. Verify that the integral
of the sum of the series over that interval is équal to the sum
of the integrals of the terms. : L.

Show that term by term differentiaion of the series is
permissible except at @ = 0.
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4]
3. Show that the series z z® (1 — a") is convergent, but

=1
not uniformly convergent, in the closed interval (1), 13,

4, Bhow that the series
oo [=a]

cos ne sin néd &N\
Z nt ° Z nt
n=1 n=1]1 o :\ “\ v
are absolutely and uniformly convergent for ail values of 4"/
5. If p > 1 and « is a constant, show that the serios W

w0 4 “:‘,
z sin na zn LD
_ Lt 4
n? 1 4 xs A\
n=1 \ ¥
converges uniformly for all values of z. \
6. Show that the series AN
o0 I s w
ogn \
z E 7 oos AN
n s
n=32 TR Y

is uniformly convergent for « g‘@ = 22 — a, where 0 < & < =
7. Bhow that the series ;:’;‘“
0, ¥
E 8(2r — 8) sin no
" & VB
is uniformly convergent for 0 = ¢ £ 2x.
8. Bhow thabshe series
- AN/ .
::\".o ) xﬂ(l — Z')
A& 2 — ")
w4 n=1
ig g}@e utely and uniformly convergent in the range
:,,\u'{” O=22z<l, ifa>o0
'\) ' 9, Bhow that the sum of the series
W 3t (2ot omtery p prae-ter _ D= - . . .

-1 ~nl
et xine ﬁzzﬁ(n—l)e Zﬂ}—I-...

is continuous for all values of =, but that the series does not
converge uniformly in any interval containing x = (.
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[8, = nze—dwe®. If # + 0, 8, >0 when n—> o if z =0,
8, = 0. Hence the sum S has the value zero for all values
of . Again, let @ = 1f+/n, so that x lies in the interval (0, 1} ;
then 8, = +/n.e—}, and therefore, when n tends to infinity,
8, tends to infinity. Thus no m can be found such that, in the
closed interval (0, 1), | Ru(z) | = 8, < e for n = m.]

10, T8 0 < k < 1, show that

iy (8 a8 o 1. A
W ju V(1 — k*sin®g) 2 Fd, 45 15 ¥ (\/
. A\

\W/

i 2 v~ Besiut 00 = F(= 3 35 15 KON

11. Tf f{z) denotes the sum of the series R4
o Q)
Fr+t
1 \
2 ST 6
n=1 £ &/

show that the series obtained by diﬁér:entiation 18 un.iforrﬁly
convergent in the range given by |\ £ @ < 1. Prove that
* f'(z) I \.
L}?dx == {lsg:gl - x) — =z -+ foth

*

and then verify that N\

oy = (@) g (1 +2) — 2.
£ )

12, H | v ] < 1@6& that
Fﬁ’ sin? § df — T3 — )
.\"p“'1—2frcosﬂ—|—r5_4 )
13. Ifx+\é~4.‘< 1, prove that. - '
2\ r cos
f‘co?\\{:—\: Picos 36 + brdeos 50 —. . . =1 tﬁﬂ"(’ﬁ;?)-

SR I — §n 5 6 5 1o, show thab

Y logcos§ = — Ltan® 8 + ptantf —Ftan®d ...
15. Show that, if » is a positive integer, and if & | < 1,
- a®
(i) I log (1 — 2acosw + a?) cos ne de = — rt
0
cos nx dx mar

@ Iol —2acos:c—|—a2:1—-a"
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16, If y = /(1 — x*) em-! &, show that
(1l —2)Dy +ay =1 — 22,

and hence prove that, if — 1 < g = 1,

. ¥ 2t 2,447 2.4, 62
— -1 — - . —_ e :
VIl —@fsinte =0 — 2 — 50 — Sy e g ~
17. If — 1 £ 2 £ 1, show that A .
A
led 1 .82% 1.8.5+07 W)
N oo R Sl N
g o+ vl +o) =2 — 55 + 5% LR
18. Tf — 1 < = 1, show that N
1o 1.82 1.8U5um
1 1 _ =T L 2F TR
BRI+ VU —al =— 35 — 5T ¥ 5 5
Deduce that, if — {r < § < 4, .\\.)
1sin? 8 331_11“9 “.3.5sins ¢
2 log (see 36) = 5 =5 +2 T 2 1.6 8 T
18, If — i £ tan-1a }w,»show that
ol
e +~§3$’ SRR S P
20. If f(x) = cos {a, Sm-l x), show that
(1— @3 (@) — 2f'(x) 4 a%(z) = 0,
and then prove\g}mt f—-1==zzx1,
cos (@ Sln“’;w)m: 1 — afe? 1. a¥at — 25)pt
¢ 21 4!
P Z“; _ az(as _— 22}(,12 _ 42)_»36
i\ 61 +-
E{educe that
\ 82(32 iz 2f ge 2 z
. AN ml o L Gl VG D
‘“3(3) Lo gyt E I '
,..\\','
\/: 21. Bhow that, if — ] =x =1,
sin (a sin-1 ) :whw
. . 1
1 ala® — 1%{a? — 3%t .

5!
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92. If f(x)=%+2i“:%+%.+. .

show that. if —1 =2 <1,

(@) = — = — log (1 — ),
and deduce that
Sy = 1 4 =g L)
23, Show that, if —1 22 =1, _ .':\:
C =\
log {m,‘/—,(—lx_/;l‘lxz-;f- ). gxs + g__:__;mj - i : Sx;f}"\?" .
24, Bhow that, if —1 <2 <1, ' \\ '

] ., 2 900 92 A4yl J
Hlog {4/{xt 4 1) — m})F = % — 4_‘”! + I

'S 8!
oo \ :,.‘ 4 - @
26, 1If z u, 18 convergent, Rrgxizé that the series z U to{®) 13
—1 ™ sl

n A%
uniformly convergent in am interval (a, b) when, for any value
of x in this interval, v,(x}8 positive and never increases with
n, and v,(z} is less tham aMixed guantity k.

Hence show thatt;\}he following series are uniformly con-

vergent in the ix{s’qml {0, 1):
=5

OZ Ty
R O e e
.:&N' (i) El (143+5++a) Trr
N ®
T2 L) = D {%_Eﬂﬁ% ,

si=0

2]
In+1 _ xn-{-l
and - dw) =ED{§77"-W}"



418 TRIGONOMETRY {cH.

show that f{z) is continuous for — 1 < 2 < |, while #(x) is
continuous for — } < x < 1, but has a finite discontinuity at
# = L. Ixplain this discrepancy.

Ans. If |2 | < 1, f(2) = log (1 - x), ${z) = L log (I + &);
but when @ = 1, f{1) = (1} = log 2. In the prooi of Abel’s
Theorern it is assumed that the series is arranged in ascending
powers of . The theorem does not, therefore, apsly o ¢lz).

b 1 2 3 Q"\
. o+ nEn +3 ‘l
2 . = e — 7
.U fe) = Z{F “on T+ 3 O
n=0 7N\S ¥
show that f(x) is continuous for — 1 < 2 < 1, b}zﬁ}&i‘éxdis-

continuous at = = 1.
Ans. Tf|z}< L fla)=2c—Iog(l + x), butf(1}<-§,2 -=2log 2.
28. Prove that \%

. — 2 cos? 85in® § = cos 99 — 3 ecos 7O +B\005 36 — 6 cos B,
and deduce that \ &

9 3.7t 4 8.3 DB 0,
9 —3.7 + 8.3 Nf =61

129, Tf 5 is an odd integer, sHOW that

o SN
) "
A nt —1
“eosee? — —=— -
kZ\‘ 6

A%/ @

30. I:E\Q“%— gbsin-lzy — 2 ax", show that
o &/

L 3 n=0
A 0 amy -y
”\‘é‘i'rd deduce that

YWY (r + 1)(n + 2)a,,, = (n? + bija,

Hence obtain the expansion({— 1 £ o £ 1}

gy L B 2wk 9% 40 g8
Mool = gk T e
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31. Transforty the eguabtion z—aj’; = #* by reans of the
gubstitution ¥4 = cosh? . Hence show that, if » and » are
positive,

T — - l+%. 5 '_1
e~ = {2 cosh ) F(2- g3 L+mns _cosh*x)'

32, The equation

dty dy -
xw+($+2)@+3y—0 '"\i\\“:

@ « \J/

has a solution of the form y = z A.ze; find the vah@s g)f the

=0
constants A, A,, . . . in berms of A,, and sta@s\%e range of
z for which the series is convergent.
‘Ans. A /A, = {— 1y(n + 2)/n ) The sq}ies converges for
all values of = " V
33. Prove that v,e 1%, wv,e-te, wlyai‘q}

n(n —2) ., .}gfﬁ'— ) — 4 , +.

1
n=logp T ST 6
o om—1 ( —M(n — 38)
By = — T 1 "..5! T = e ey

are golutions of the eq&{ 1on

\«z{w (n +} — 1%y = 0.
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CHAPTER XX

INFINITE PRODUCTS : FUNCTIONS OF A COMPLEX

Q
VARIABLE

.\:\'
§ 1. Tannery’s Theorem £\
THis important theorem, by means of which egqi?gnsions
in infinite series can be derived from known/gxpansions
containing only & finite number of terms, can'bé stated as
follows : v

_ N O
Let F(n) = 2 ur(n)< ;.\ v
r=( \ - 3
where %{n} is a function of n,,;ah‘d N iz either infinity or
a function of n which tendg~t0 infinity with n. If the

following conditions are fulfilled :

(i) #,{n) tends to a_definite Lmit v, when n tends to
infinity, for every valteof #,

(i) | (n) | < M) Where M, is a {positive) number
independent of #, for every r,

: 4 » o
(i) tho,deties > M, is convergent,
y .\' » 4 =0 0
then, mwlien n tends to infinity, F(n) tends to the limit Z T
wince | u,{n) | < M, and u,(n) tends to v, when n tends

Ot infinity, | v, | < M.. Thus the serjes Zv, is absolutely
\ } convergent,

Now, given ¢, choose m, & positive integer, so large that

-]
2 M, <1,
r=m+i
420
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-and let # be so large that N > m. Write

o
Win) — 3 o= o+ B+ 7,
r=0

m
where o= » {ule)—v}
pe=i}
N O
B = z #,(n), \”}\
r=m-+1 A
0 A 3
Y= z Oy \ \\\
r=in—+1 Ny
Then \
¥ o 'x',\\’
A1 3 M2 XM <
r=m+1 r=3nl-}i
R
and lyl< M, <ie
“{S’?f;l;‘l'l

Now the value of g depends only on the series ZM,, and
is thercfore mdepqﬁgiént of n. Having chosen m so that

the ineguality™ M, < }e ia satisfied, keep it ﬁxgd. The

. \} Fem+1
series « cgndins only m-+1 terms, and therefore a number n,.

can b found so large that, if n = ny, | « | <<4e. Thus, if
"\Q. .

% 2y n being chosen so large that N > m,

O

S

a

™

SV B~ S sl H Bl +Hlvi<e

r=0
Hence it follows that, when # tends to infinity, F(n) tends

(=]
to z Py

e )
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Example.~From the expansions [Ch. XV, § 4 {5}, (6a)]

nwin — 1)

{e) cosnd = cos" § — 57

cog®2dsintl b, ..,

{b) sin nd = % cos™-1 § sin #
_nn e — 2 g 4.

3!
where n is a positive integer, deduce the expansions W\ '+
o g O
(c)cosx=1—2—!+4—! — oy ,\:\“‘;
4
S 5 ‘4
d) sine — @ ——0 412 L. AN
@) sine =& =37 + 5 '\Q\}
[In (@) put n# =z Then \\,
$
Lz 1 2y ¥
we= (=0 (1=5) (R RO
. iw» O
(S 2™ 22
R\ lis z ]’
NN )
where 2r 5 #. N\
/«ﬁ\ . 2r
¢ &\} 8in —
Now \ ——— = ]
O A= 00 2
N\‘\wl ¥

2N\ d
and (tCQwXVII, § 6, Example 1)

{\\i':}{” £ (cos g)n_zr = I.

LS o
N -

Therefore

. ot
£ U= (= 1y o
. n—prco

Also

Ed
=
o | <22,
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But Z{z¥((2r)1} is absoclutely convergont. Henee, by
Tannery’s Theorem, (¢} follows from (@). In the same way
{d) can be deduced from (b).]

§ 2. Espansion of cotf in an Infinite Series of Partia
Fractions
If # is & posilive intcger A
£\
. 0 .. B\ AN
cos @4 dsin 8 = (coséﬁ + 1&111-2?%) ,”3«"}
/4 N ; ) ;
whence, on equating imaginary parts, we deducerthat
) : 2n—1 8 A\
gin § = 20, (cos —) sin —

Zn 2n ) :\\;

g3, G\Y '
— 2“03(003 Eﬁ) (sm*—g:D + ..
":}i 3 g, . Oy¥1
L Enel 2m s v
@ s (s )

From the :sl.l_bstitut-ig:»ﬁ"":v

\\QQS 2n
it follows thab,

— 1 — gin®—
=1 —sn o

in 0 oo 02 cos L[ A, 1 Apsin®
—:tsmﬁcos% o T Agf an

{‘\s. ) ] 9 o2
"\ Ny 4+ ... + Azn—E(SIn Q;’) }

\:.‘; But sin @ vanishes when # =17, where r =0, £1
4+ 2, .. .; hence '

n—1 gin? —.

. ) ] 2n
smB:Asm—-ﬂ 1 - :

n T

=1 sm* -

2
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On dividing by sin (#/n), and making # tend lo zero, we -
find that A = »; thus '

n—1 sin? —

a 2n
in 8 — n sin — 1 — :
sin = n smn E iy
oa O
Next, differentiate this equation logarithmically, andget’
AN\
8 O
p—1 SN — 008 — .\
cotﬂ:fct”;_lz Zn 2"'?5\*. )
n & \r'rr
r=1 sm2 = —
‘\.
where 6 &= ba, k=0, 4 1, :};2 .,\\.
Now let RS
si &cé
1 a3
u.'l"(n) - TN
n.ﬁ'ﬁ}"ﬁr — 5 6
™y 2n 2
Then ~
QN
8
2 Suf on 1
wtn = jaespl =5 ) —
N\ ¥4 sm 2 sin E?-?, Q;i, o _
INY T . 8 @2
i"\.{' —2;?’ Hin g
@Q}l erefore
:“\i.::. ¥ 28
/n> o/ ngwuf(ﬂ) = m = ¥, 52Y.
' .y i} W
Now let p be a positive integer so large that % I <3

and therefore, if n 2 p, | % ‘ < g Then, if » = p,
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§2]
i
- 2_;3 a*
(}xcfos%<1, l<-T-F<§.
sin —
2n
Also, since r << n — 1, it follows that 0 < ra/(2n) < im,
and therefore A
: 4
ror ¢\
sin =— ~\ ¢
2 O
1> _Fs S Y
?’I"r ' 4 “‘
i NN
2n :\'(}
Hence, if m is a positive integer, chosen Q\\Bat m>%] 01,
and]_f'r‘b'm n:}P’ x’\"
4 {'
2 = 1 O .0
A =M,
luede) | <772 2)2 s B o
(:rr :{9@'
say. : “;:3. »
‘But the series " 'S M,
,i\ r=m
is convergent ‘ﬁence, if
3
\ ’Q; - Z u.(n),

it 5\@% from Tannery’s Theorem thaé
\:““ L: Fn) = z Dy

>0

*If 0 < 0 < 4o, 1 < Bfsin 0 < §m For

g0 5% ang—0)>0, HO<<im

Thus §/sin # increases as ¢ increases from 0 to f.



420 TRIGONOMETRY [cH. X%

But {1) can be written
a— 1

cot @ = icot-:; — 'Z aw,(n) — Fin).
=1
Thus, when % tends to infinity, we have
od
1 26
i+ 3
where 8 &= kn, k=0, -1, + 2, +3,. ... A

For an alternative proof of (2} see § 4, Note ln\\“'
Erample 1.—Prove that, if § + nn, where \\:\\\.

- n = 0, +1, 1 2 : .\
l Tt
et § = _9 z (8 Mg nw ‘—Ii\\ 8 < nw
~‘s} n=1
[From (2}, Y S

‘me_f+ L z(ﬁ’—in; )

P> n=a1 N

3"

= +£{Z s—m m) i(ﬁ—'—nw m)}‘

a=1 a=1

from which tho result follows,]

Exam;gl'&z Show that, if 8 + ﬂﬂ, where

'\{.
$0— z("l]“gz_,azz

q;,l)—-

N «

:%-[_z(— 1}“(6‘ —lnw+%)

fi=]

+ z (ﬁl)" (9—]—?:17

n=1

{Employ the identity cosee # = cot. %8 — cot 4.]

1

Kk

)
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Ezample 3.—Show that, if § + (v + §)=, where
n=0 1 +£2...,

el

g

() tan o =3 3 2n & Lyea? — 46%
r=0 o
-5 1 _1,_}
o {(n+%)v—3 (n + DA
ne=— 0 N\
cm e )
. 2n 4+ D= D
(i) sec 9 = 4> (— l)“mﬁr—wﬁaé N
n="> 257
S 1 1 \:"".\\. 1 }
= 2 (=1 {(n+§)ﬂ—e @+ D)
n=—Co x.,\\,}
Erample 4—Prove that '\:
'S N

LI I 1 AN _ =
D ptmat 3—._)"‘?';3 a3
U B T T\ _

(ii) F—{-?:b“s—&‘l“- =g
[For (i) multiply (2) by¥, assume that | ¢ | is small, and
oxpand both sides of e equation in powers of 8, equating
the coefficients of 2. .~For {ii) multiply (i) by 1 and subtract the
resulting equatio Q%n’l {i).]
Baample 5.-3Prave that, if  is not integral,
O .
"\
Y «%cosec® mx = x4+ n)
R
e H=—00

\ W
l(’%sirrﬁ)le 8,—Prove that

&«
2%

o

/

\

I 2
cothz = — + z = rent
r=1

&7

N7

[(1 + eyt 4 (1 — sy
(1 + afr)» — (1 — x;’n%;‘

A A, B,
= E—i— z ?"ﬂ’+ . '?"‘ﬁ']’
x — intan — x—|—mtan;j

=1
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where N == i(n — 1} or (n — 2) according as % is odd or even, .
N

Here A = A, =B, = 1, 5o that R.H.S. = i - 2 %,, where

y=1
rw of o F@lrmy? R P
%, = 2y cos? — = Jpip?|gin = 12 + 2 cos? -},
1 nln 7 J
and, if r > L | = |,

|, | < __2f=] £
’ ir* — |z | 7 O
The result follows by Tannery’s Thanrem.] N
Erample 7.—Show that . m'\ &
' @ \/
1
z e = eoth T':\‘*{)'
n=1 A
§ 3. Infinite Products
Let SN

_ A r=1

A

where the symhogn,‘the right denotes the product fyf; - - . far
Then if, when M tends to infinity, P, tends to a definite
non-zero Ii;qiq P, the infinite preduct

V4
N

 § » ©
v/ r=1
“is}%aid to be convergent and to converge to the value P.

AN R, tends to + o or — oo, the product is said to be
7\ divergent,

If P, tends to zero, the product is said to diverge to zero.

If, however, each of a finite number of factors has the

value zero, the product is convergent if it converges when

these factors are removed. In such cases the product has
the value zero.

N
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Tf P, does not tend to a definite limit or to +- o0 or — o0,
it is said to pseiliate.

Note—If the product is convergent, f, - 1 when
n— w. Forf, = P,/P,,, and P, and P,_; both tend
to the same non-zero limit P when n — oo.

1

P = 2 L

Ezxample 1.—P,=%.%.% .. g rens ¢ Here P, + 0.

The product diverges to zero. p \:‘
Bvample 2.~ P, =3.2.4...°2  =n+ 1. Hero B, Oe.

The product is divergent. P
 Example 3--P,=1}.2.}.2...ton factors, & Here P,
is equal to % or 1 according as » is add or evény The product
oscillates, \

Bzample 4—P, =(— 1}.(— 1}. (—,1)\.\7 . to n factors,
The product oscillates. ’~~x\ v

Ezample 5—P, = {— 1). (— 26 =3} . . (—n) The
product oscillates infinitely. o «

Ezample 6.—1If — 1 < = <) show that the product

(14 o) (1 4 a2l 4 24 (1 + 250 - -

converges to 1/{1 — x),0

Ezample 7.—Sh0§f"t3’ka,t

: a g XN gin 8
@ oo3g eos gpoods - - =555
5 4 (7.0 4. .8 4, 8 sin 8
(ii) (1 Tﬁ’f‘hég)(l“?gsms‘z (1—§sln5§§) v =—p
EmfmééEe 8.—8how that
L\ oo @
N\ 2 .. 1y
™ _—— 1 = 1——) =%
N W n{l nin + lj} LI n ( “g)
7 n=2 n=2
w ’ k] k]
THEOREM.—If the series z log f,, where each f, is posi-
r=1 w
tive, converges to the sum B, the product nfr CONVerges

r=1

to the (non-zero) value e,
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Let Sﬂ = logfl + l(_'.gf2 + .. ]Ugfﬂ;
then, since fr = elog [,

Pﬂ = nfr = &b,
=1

Now, when n tends to infinity, 8, tends to 8, and therés
fore, as the exponential function is continuous, e tefigs
to ¢5, Hence, when n tends to infinity, P, tonds toes. ™

If 8, tends to + oo, P, tends Lo infinity, whileyif S,
tends to — co, P, tends to zero. Thus, if i} Sequence
{S,) is convergent, the product is convedet; if the
sequence diverges to 4 oo, the product diférpes to + o ;
and if the sequence diverges to — oo, thezproduct diverges
to zero. o \d

Note—The condition stated in,.fhé above theorer for
the convergence of the produgb NAf,, namely, that the
product is convergent if the setics 2 log f, is convergent,
Is not merely a sufficient condition ; it is a mecessary condi-
tion.  Since f, tends to Lukhen n tends to infinity, only a
finite number of the f3ttors can be negative (or zero).
Omit these to ensurefthat f, is always positive, and that, in
consequence, log’ _f;«:ha-s always a real value. Then, since

P, =, 8, <legP,. Therefore, if P, tends to & definite
(positive) 1‘101%0 limit P, 8, must tend to s definitc limit
log P. oy o

The predact IT f. is said to be absolutely convergent or
conditionally convergent according as the series X logf,. is
ab dll}tely or conditionally convergent. Tf the product is

solutely coavergent, its value is not altered if the ordor

,ja;]‘f the factors is altered : this follows from the correspondi.ng_

nd \ theorem (Ch. XVIII, § 5) for absolutely convergent series.

\‘:

On the other hand, if the product is conditionally convergent,
& derangement of the factors may alter its value or make it
divergent.

Example 9.—Prove that, if the serios Fu, is absolutely
convergent, the product (1 + u,) js absclutely convergent.
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Choose m so large that, if = m, |u, | < 1.
Then .
log (L 4 w.) = u, — du,® + 300 — . . .,

and therefore
Jlog (L +uwd il S [ual + 1ot * +lua "+, ...
Now let k be the greatest of the moduli

N

[ % s | Yants s | %o |y« « +5 then, if n = m, ne
Jlog (1 +ug) | < lun| X (X +k4+&+. .. O
< Jal A\
=1_k . ‘{:
o '“.\

Thus, by the Comparison Theorein, z 10g (1 + w,) is

9 kAP
absolutely convergent. It follows 1:h&kx @&he infinite product
ig gbsolutely convergent. \S _

Ezample 10.—If a, is always positive, show that the infinite
product II(l 4+ a,) converges or diverges according as the
infinite series Zu, converges erydiverges.

If Za, converges, the résult follows from Example 9. If
Za, diverges, N

74\

n
‘ ﬁ (1 +a)z R o
- =
\ r=1 r=1
But, when nS)w, the R.H.S., > @ : hence the T.H.S. also
- 0, U
Exam@ig"il.—lf the series Tu,? in convergent, prove that

theﬁmghmt
N i

N\ TTet + wade—un
\ - A=l

“is absolutely convergent.

Choose m so large that, for # = m, |u,| < 1. Then, asin
Example 9,

w2
[ log (1 4- w,) — ta | = =%

and the result follows by the Comparison Test.
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Bpample 12.—Show that the product

{1+ 37

is abselutely convergent.

Frample 13.—TFf the series Zu,® is convergent, show that® 8 N
the infinite product JI{1 1+ w,) eonverges, diverges, or diverges, .
to zero, aceording as Zu, converges, divergos to + oo’,.’bp"\
diverges to — w. )

£
\/

From Example 11 it follows that the serics £
Z {log (1 + u,) — u,} Lo

is convergent. If its sum is L, and if the saimnsdo # terms of
the series Zlog (1l + w,) and Zu, are S, m{i ¥, respectively,

then ’:.\
£Sn — £ 2“ _‘_;L}s.

f—>D A0 L)

W
2 N

From this the result follows. ’:~

Example 14—Prove that$hie products

@ 2 w 1 o 1
R ((RE N (R
= ¢ \‘~' =i fi=

are eonditional;ly,convergent, divergent and divergent to zero
respectively. \  Ndf
LN "4

Ezamplets.—Show that the product
oy &/

o\s"; i {(— 1)
R\ n{l Y }
N n=_2
.»\Zi\gliverges to zero.

\/ [Show_ that Z{ log (1 _qu/':ai':) -+ ((_ 1}"+l)} is ab-

v'n 2n
solutely convergent, and that therefore z log (1 — L:v—;)-)

diverges to — w.]
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Tannery's Theorem for Products.
If, with the notation of § 1,

N
= T4+ wm),
=0
and if the conditions {i), (ii), (iii) of § 1 are fulﬁll(,d Py }\
tends to the limit ' “\
NN
o . « \J
TTa+oe,
r=10 I'{:"
. NS
when » tends to infinity. N

Choose a positive integer m so lar &Jt-hat, if »r=m,
M, << 1, and thercfore | u,.(n) | < 1. 'I%‘en if ¥ = m,

log {1 + u,(n)} = u,(n) — $u,( n)}*+ o, ()P —

and thercfore {

Tog £ o} | = MM 30 =1fI'Mo
Thas “\
M
\mg w0} < 7=
where 1 13,&..& grea,test of M,,, My,iy, - . . , and is there.

fore md,ogendent of r and =.
H\"Ce’ by Tannery’s Theorem for series, the sum

.\ N
s\’;_' > log {1 + u(n)}

3 r=im
tends to the value

> log (1 -+ v,

when  tends to infinity.
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Thus the product '

N
1T O+ u.n)}
r=m
[#4]
tends to TT -+,
T ¢ «\.
and from this the theorem follows. i\\"’u
\/

§ 4, Infinite Products for sin § and q@,ﬁ:}é"«

&

If pm <8 <(p ++ 1)w, where p is geNé;‘;};r a positive .
integer, then, from (2), \
» X’ \"[n

@ 1 28 4% & _— 26dp
L{cot 6 — 8 2 9z — fzﬂz}.fdﬁj;é z j. 252 _ g2

=1 \J r=p+1l

[See Ch. XIX, § 2, Exampl&:&j Hence

(— 1)? sin Q3
——— o 82
log L g2 P = log (1 — —)
P | B R
7= \ 4
Thus \:\
N \’/‘M . s
(N (— D2 gin 8 a2
=TI (1 - "2“3)
\x}{ 8”(—92—— ) rempt1 T35
a”g\ r=1 i
/\Vand therefore :
O =
/ -
sm&:ﬂn(l—ﬁ;ﬁ). . . (3)
r=1

As the funetions on both sides of the equation are odd, the
formula holds for negative as well as for pesitive values of 8.
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Again

sin 26 g—rao =1 N\ righ -

2sind of Tor 462
,C 20 ( 1— @;g)
Her 0 =1

and therefore

- [ 46° ' ..\’:‘t
T e—=f O

R > Ly

" &
Alternative Proof —The formula (3) may be dedL\ced from
the formula

NS

] T
— gin® L aine
sin @ = x sin ~ n(l gin: % in 2:@)
(see § 2) by applying Tannery’s/Théorem for products
For, if p is a positive integer chosell so large that
640
2p| 2

.

then, as in § 2, if # 21{{,

Gr 707\ / ry?
2 - )
sin 2?%/}3}@{2% < (2%) (n) 41‘3 =M
and, conseqqenﬂy, the theorem is applicable.

Note L Pormula (2) can now be derived from formula
(3) by~logarithmic differentiation (see Ch. XIX, § 2,
Exa.@ié 3).

A\

,F rample 1.—Show that
\ \" ' 1 “J:"_

/ 14+2¢-_4+' LTy
If 2 is small,
ui H ark
log B:x=]og(]_v—%-{-i-2—0—.) ZIOg( nss)

we=1
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Expand both sides in powers of &, and equate tho coefficients
of x*.

Bzample 2.—Show that
174

Note 2.—As the infinite series 2{8/(r=)} and Z{— 8(rm 3
are not convergent, it is not permissible (§ 3, Examplel '1*3}

to write the product (3) in the form 4 >\ N
o2 s;’
a 9
sing =0 T (1——) 7
.\‘
t=—cp

where the dash indicates that there ie no factor corre-
sponding to r = 0. The formula c&m ’}mwever, be written

5in = 6@ [; ]_[:. l——-) . . 4

n—)&p r*— ~n

where the product must. bez’put in convergent form hefore
it can be written ag ans «tifinite product.

Ezample 3. -—Deu\te the formula sin {(f + =) = — sin ¢ from
the product fom?& for sin @,
From (4)

:sfp.x6+w)=(a+w) L ﬁ (

'\w B> F=—n

%)
' ’~(e+ L‘ ]‘[{(r~1)«—a (r+1)ﬂ+9}
\

R=->w r=1

=_9£ n{m—a'rmt-s}(n l}w—f-ﬁ:l

ng — @
n->00 =l

=h9r|'( rw) = — min g

r=1
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Ezample 4.—Bhow that

oo TT {(1- %))

R=—00

§ 5. Beries of Complex Terms

The infinite series

Zw, =w, -+ wp Fwg+ .., N
in which w,—u, i, #»=1238, ..., &N

u, and v, being real, is said to be convergent if édeh of the
series Zu, and Xv, is convergent. If the'eums of these
series are U and V respectively, the sen@ i, COLVErges
to the sum W, where W = U - iV. A" '

Condition for Convergence—The neogssary and sufficient
condition that the series Zw, shouldybe convergent is that,
corresponding to any assigned peslﬁwe number ¢, however
small, a positive integer iy ean be found such that, if
% = m, 2

[wn+1”+'wﬁ+2+‘ et | <6

where p is any pos,ltm\e integer.
The condition*is\necessary ; for, if U,, V,, W, are the

sums of the figshn terms of the series Z’uﬂ, Eﬂm 2w, respec:

tively, ."\ 3
N = U, + ﬁVﬂ,
. and\ ‘wm —W, = (Unw LU+ iV, — V.
Hence
!an_ 1 iUnw_U'"f’iVéHp_V'E'

vt

Now if the series Zu, and Jw, are convergent, m can bo
chosen so large that each term on the right of this in-
equality is less than }e, and therefore | Wy, — Wy I <€
Thus the condition is necessary. :
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Also the condition is sufficient. TFor
l U-n+:: e Un 1 g | Wﬂ-i-p - Wn | »
and | Vm-:: — Vn 1 g | Wn+p - Wn [ '

and congequently, if the condition is fulfilled, Xw, and

2, sre convergent. )
Absolute Convergence—The series Zw, is said to b6 >

absolutely convergent if each of the series Zu, and Zwy, is

\ R 2\,
abgolutely convergent. From the inequalities £\

lw,,]é]unt+[vn|,n=l,2,3, . '(":f’g'

it follows that the series X' | w,, | is then also c‘(ihve[:gent.
Conversely, if the series X' | w, | is con¥€fgent, the series
Zw,; is absolutely convergent. This\Nbllows from the
inequalities IR
L | S ], lon| S Lupdym=1,2,8, .. ..

Power Series—If, when n tehds to infinity, | @,/@mn |
tends to R, it follows, as itl\@hapter XVI1J, § 4, that the
power series a,z¢ convefges absolutely if | 2| < R. The
length R is called the};ﬁdius of convergence and the circle
| 2| = R is the cirgle.of convergence.

Ezample I—Sﬁ’c}v that, if |z | < 1,
N1
N —— 2
T—> 14z4+224+....
[_._';1\;14_3_!_22_'_ +zn~1+i and, when
l:%’z e om l_z, ’
s, [2" | > 0asn > w.]

z(ﬁ'mmpk 2—B8how that, if — 1 <+ < 1,
S .. 1 —rcosé
O i) T SroosfFrm— 1+ rcos § + rtcos 28

} . +rFcos 3+ o0y

(i) r sin 8

1-— 2rcosd + o2

[In Exemple 1 put z — » (cos § + ¢sin §) and equebe the

real and the imaginary perts.]

=rsinf 4 r2gin20 + ¥ein3d ..
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Hrample 3.—8how that tho series

z 2 z®
bt yy+gitsy b

converges absolutely for all vatues of z.

Example 4.—8how that the series F (= 83 s 2) is absolutely
convergent if |z | << 1.

Multiplication of Series—The rule for the product of two
absolutely convcrgent series of complex terms is 1dent,1t<'aik
with that stated in Chapter XVIII, § 6, and the pno&f is
that given there under Case TT.

.
77
 { )

s }n~\

(24
Zsz n__z 2t
n=0 =0 n=0

\

Funetions of @ Complex Variable a\H wir, y) and ez, ¥}
are real functions of the 1ndcpcndent real variables x and
¥, the function w(z, y) - i v{z, Ph4s said to be a function
of the complex variable z, Where z =z -+ fy. It is usual,
however, to confine the dmcussmn of functions of a com-
plex \ad[’l&ble to those Iunctlon% which can be expressed
explicitly in terms of the variable z (scc Ch. XVI, § 2).
In what follows the, functions considered can all be ex-
pressed as eon };geﬁt power scries in z, or &8 the guoticnts
of two such b&;

If, to eaelwalue of z in a region of tho z-plane, there.
corresponds”one and only one value of the function f{z)
that flm\ehon is said to be wniform or single- valued In th{1
regign)  If more than one value corresponds, in gemeral,
4 éswh value of z, the function is many-valued or mulbiple-
wiued, For instance, if n is a positive integer greater than’
) unity, the function zlf“ hag n values for each value of z
except z = 0, These are given in Chaptor XIV, § 7, in
the form

FEzample 5 —8how that

¥

olin (COS [V +n2k7r G +n2k‘h') .

+ zsin
where z = r {cos @ + isin 8) and & =0, 1, 2, B
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It o straight line along the uegative real axis from 0 to
— oo i3 taken as a barrier or crosscaf which the variable
z is not allowed to cross, any one of these values can he
regarded as a uniform function throughout the plane, and
it is called a bramch of the function,  When 2 passes round
the origin, crossing over the eross-cut, the function changesy
from one of its branehes to anether. ¥or this reason §he
origin is called a branch point of the function. AN
Limit of @ Function.—A function f(z), or, if f(z) ig tuany-
valued, any one branch of this funetion, is said, i;'g tend to
the limit L when z tends to 2z, if, corresponding to any
assigned positive number e, however zmally a positive

number 3 can be found such that, if { a0 | = 8, 2=k %,

| f12) — flz) | <o
T

4

We then write
£f(3) =L; or flag\+ [ when 2z-—2z. .
iz . ’ $

Continuity.—A unifor}ﬁ.‘function f{z), or, if the funetion
is many-valued, a branch of the function, is continvous
at & point 2, if (iMJ(2,) has a value, (i) f{z) — f(z) when
2>z ¢ '\‘.,’

Uniform Qo%ergeme.——The definitions of upiform con-
vergence of ‘sefjuences and series of functions of & complex
variable s 'are identical with those given in Chapter XIX,
§ 1, fopfunctions of a real variable, except that the closed
ingf?ﬁls are teplaced hy closed regions of the z-plane;
thad is, by regions which include the points on their boun-

Adaries. Theorem I, on the continuity of the sum of 2

) serics, can then be proved in the same way as before, and

VvV

the proof of Weierstrass’s M-Test in § 2 also remains valid.
Thus, as in Chapter XIX, § 3, Corollary T, it can be shown
that the sum of a power series is continuous at all points
within the circle of convergence,
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§ 8. The Generalised Exponential Function

The exponential function may be defined for complex
values of the srgument by the equation

. ® 2 28 .
: == T T a3 0 e . it
exple) =1+ttt (5}

The series converges absclutely for all values of 2, and,
sonsequently, the funetion is continuous for all values of 2.

1t is clearly a single-valued function. AN
Brample 1.—Bhow that exp(z;) exp(z:) = exp (z) £ Za)e
[See § 5, Example 5.] RO
From (5), "S 4
. iz ()2, (%)%, @) NN
exp(%m)ml—kl—-!—i—??— W-‘f’—-‘rl\\—’k...
- 2 xt WEAN '
(-Gt )il nraT )
gnd therefore, if x is real, ',j:’.. ) _ '
exp (ix) =%« + i sin 2. . . (8)

Tt follows that, if z =" -+ iy, where » and y are real,
exp (z) = exp“(aii exp (iy),= e? (vos y + isiny). (7)
]

It is often corfvénient to write e® in place of exp (z). The
function 7 sg*defined is, of course, a uniform function of z.
From theegaation

P\ e? — ¢ (cos ¥ + 1 sin y)
it is 2By to deduce the index laws
‘\ eo1ghy — ez1+za’ e — ]_, g% = 1;’8’.

oAy EMmple 2, If O = ercost cog (#8in 6), 5 = et o8 8 gin (1 gin &,
\“express C + {8 as a function of z; and expand C and 8 in
ascending powers of 7, giving in each case the general term.

Ans, C + i8 = exp{z),
w i in né
" & n
R

# ! n!
n=0 n=1 -
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Periodicity—I1f m is an integer or zero,

e®mT — woy Zmng 4 7 sin Qma — 1.

Thus gEFRMT . 2
5o that the exponential function has the poricd 2is.
Zeros and Infinities—From (7) it is clear 1hat N\
| ez | == ez, 7N, ¢
oA

and therefore ¢? can only have zero or infinile valuessgwhen
e® is zero or infinite. Thus e is zero only thn'g:m':\"'— o,
- and infinite only when x = 4 co. A\ 3
2 '\'“
§ 7. The Generalised Circular and Hypérﬁd}le Functions
Equation (6) may be written N\
e = con x + ’.',bl{{ ¥,
and, if z is replaced by — =, thighEcomes
e i = 005}3,:’«— 7 8in .
From these two equations'it follows that
P W fr _ p—iz
cos = AL L sinz—c . (8
m\\ 2 oo
These equati()lﬁgﬁrduld be compared with those of Chapter
XVIL, § 9, for the hyperbolic functions,
The cigelar and hyperbolic functions may now be -
defined (for” complex values of their arguments by the

equa.“t-\i@)sé'
\J giz e—is . iE __ p—it
\§ cos z == -——;——, ginz = P—T .t
N o 2 p-1 5 . R
»\:\, cosh z = u—é_e_, sinh z — eTe.‘ .o
3

with corresponding expressions for the other circular and
hyperbolic functions., From these definilions the relations

cos (iz) == cosh 2, sin (fz) = {ginhz, . (11}
cosh (iz) = conz, sinh {iz) = { sin 2, . {12
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are casily derived, Trom () and {10) and the expansion
(5), the expansions
22 "

cosz=]—ﬁ—|—;f~!~—..., . . {13
. 2® 2
mnz:z—ﬁ-{—a—..., . .14y

28 zt

Uoshz=1—|—-———|———l+u., . . {15\
al \ 16
;31—|-5'+ - -“\,\-}S’( )

can be deduced. From (9) and (10} it fmlg“;‘s'\ti:ﬁ.t
0% w= o0z z 4 teinz, €f = cosh 2 3K gith z. {17)
Hrample 1,—Show that ’:t\\”

(i) 008 (2; - %) = ©GOS 2, CO8 3 ~\1n 2, 8in z,

(ii) sin (2; 4 2,) = sin 2, cos ze +cos Zy SIIL &g,
{iii) cosh{z, + 2,) = cosh zl.cosh 2y + sinh z, sinh z,,
{iv) sinh {z, + 2,) = smhzr ¢osh z, + cosh z, sinh z,.

sinh 2z = 2

Frample 2. —-Bhow that ::"
(i) eosfz + nr} = b "1)“ COB 2,
(ii} sin (z - nw) =N — 1)® sin 2.

Keample 3. —Show“ahatr

(i) cos {3 \Qy) = cos x.eosh y — ¢sin xsinh g,

{ii) sin (w4 Yy) = sin z cosh g + ¢ cos z sinh g,
(iii) costiN® + #y) — cosh z cos y + sinh z sin ¢,
{iv) inb/(x + 4y) = sinh x cos ¥ + ¢ cosh = s y.

Examﬁie"-":.—Show that

O i :
\“, L sin az _ ‘£ smhaz-__a’
Q z z

*,', z—0 z—>0

\ . [Employ formuls (14) and (16}.]

»“ Erample 5.~-If |z | < 1, show that

{i} |sinz| 2 8|2} (il {eosz | < 2.

i z |

4.

[From{lcl), |einz| = |2] +
1 : &
Iz[(l+ﬁ+€9—+' ..)=g|zf

1A
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. 1,1
From {18), |cosz| =1 —[—§~!—[—E ..
1 1
<ltgtgmt...=2]
Erample 6. —If | 2 | < 1, show that
LI
‘sinz 2 O
fleinz | = |sin(z + iy} | = +/ (sin?x cosh® y + cosz S}.Qﬁiy}

4/ (8in® & + sinh?y)

: 3
N\

Z 4/ {sin?x -} sin? y), from (14) and (16) G\
2 Vil ~cos(lz| +lyDeos(z |~ ul.
Now
U1+ 1910 =25 by~ (o] - | gD + ) <2,
and therefore |z + ]y < 2 {\é'a.
Hence ' —dr < x| — |y.|‘;§ :17:'
and therefore v ,
feinz]| =2 41 —cos{|z| + | ¢ 1
= \/(lucos[z|)—:,x/2smﬂz|
Thus '}
- 3 |z T
snz| = VI Lln.i§|z| = ”’2§i*§“l;“|—|z“[§ Ve

{Bee p. 425, footnote.)}
Example 7. —Slfo}: ‘that

{i) cos? z\E\smz z =1, {ii} cosh®z — sinhz = 1,
mep{qﬁ;?—Show that {cos z + £ sin z) {cogs z — i sin z) == L.
Exampl\a'x‘a —Prove that

(i) (co§~z +ising){eosz, +disinz,). . |, (cosz, + 4sinsz,)
\O — 008 (21 F 2y - . . . 2,) o
+zsm(z 4z, 4+, .. Znh

\(Nu {eosz; —isinz ) (coszy — isingz,). . . (:305 z, — i8inz,)

— 008 {0y + 24+ - -+ 2,)
»-—@sm(zl—f-z,, et Zal

Brample 10,—Demoivre’s Theorem. Show that, if » is an
integer, positive or negativo,
{eosz & isin z)* = cos nz + 4 zin nz;

while, if # is a rational fraction, cos nz + i 2sin nz is one of the
valuea of (cosz + ¢ sin z)»,
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Example 11. ——Show that, if » is an integer, positive or

negative,
{sos 2 — i8in 2z} = cosne — tsmm;

while, if » is & rational fraction, cos nz — ¢ sin w2z is one of the
values of {cos 2 — ¢ sin z}®,

Example 12.—If n iz a positive integer, show that

{i} cosnz = gos™z {1 — "Cy?2 4 st — . . .},
{ii} sin nz = cos” z("Cg — =Ca®* + . . ), O\
R O e b S I LW
(i) tennz = s e O
where { = fan 2. & N\
[Formule (i} and (if) are obtained by expandmg tho ex-
pressions on the right of the equations ‘\
2 cos nz = (cos 2 4 ¢8in 2)® 4 (cosz NG sin z)%,
2 ¢ sin nz = {cos 2z + 4 sin 2)» — (cos z\—«é sin 2)".]
D
Ezaimnple 13.—Show that : AV
cos 2y + 23 + . . .+ 2) ' ~‘t"’
. =082, C08 Z; . L ceosz, (1 —T, +T,— ...}
8 {2 —2; + . . . %) s" .
. =cos % uosrz, ceoszy (Ty—Te+T5— .- )

where T, iz the sum of the,prcducts of tan z;, tan 2, . . .,
tan z,, taken v at a tife,

Brample t4. —8th \1&1:

2® sint 2 cos® 2 --c})a 103—|—200$82—30036z
- Boos 4z + 2eos 2z 1 6.
[Put 21,9.1112:,—— gt - g5 2oosz = g% |- g¥]

mmplxz 15 —S8how that the factor formule of Chapter XV,
©§5, all ho?ld when 4 is replaced by a complex number z.

Jifa}ampée 16.—If = is a positive integer, and z + km, where

a0, + 1, 4+ 2, .. . show that
AN
1 z
GCI'IJZ— -
m 1
2 008—“‘3—'_
2 s Mo £ 17 20 + 1
+2n+1 : 2 g TF

=18 gy S T
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As in Example 12 it can be shown that
cot (Z2n + 1
_ 1 _— EnLIL‘_z ;2 'tl— o JI_ ( - I)u ER-I'l(_:_:!“ tzn
- el — eG4 _-i-(— Ljr Bearg, el

where £ denotos tan z.  The factors of the denominator are of
the form

N\
t — tan {ra/{Zn - 1)1,
whers O\
r=0, £ 1, +2 , = R y'\\
o
Hence O
# N
A )
cot (2n + 1)z — r 'r;;},
r=—n t8N 2 — Ta{{\z?ﬁ—{-—l
whers N\
A, — leot (2n + 1 > tan ™ }
r = £ -Lw (2n 4 1)z (tﬁ,a i anm} '
rw % }
P Earl :":‘
or, if $az —pafiZn 4 1),
A, = seet 27 ‘?Z: {eot (2n +— 1) &in {}
v 2n 45T '
3]
— seatS YT [0, 1y
_:‘?‘?‘\2”‘_!“1/{%—'_ ),

by Example \\';
Tho resulf cah now be obtained by replacing z by z/(2n + 1)
and corbiring the terms in pairs.
£

E??am}??é)l'?.—-lixpansion of cot Z in an infinite series of partial
fra.cmﬁ{hs’." Show that, if z + kw, where k=0, + 1, = 2, . - -

O -
) 1 2z
':;\ cotz = ~z- £ Z ﬁz;ﬁ’
AN —t
a \% .
\,: This can be deduced from the formmula of Lxample 18 by

applying Tannery’s Theorem, which, as can be scen by re-
forring to the proof, holds for complex as well as real series.
The formulwe of Examples 4, 5 and 6 are required in the proof.
The formula may also be deduced from Example 2, § 10,
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§ 8. The Generalised Logarithmic Function
If 2 == exp w, where w = u + v, then
z=roosf - irsin f =¥t = g¥cos v -+ 1 e¥sin g,

where, of course, # hag an infinite number of values differing
from each other by multiples of 2% : therefore

r==g¥ and H=w '\:\‘
Hence u=Ilogr and o=280,. \ O
so that 1w == log r + 48, O8N

This function is the inverse of expw, and,~i1§a’en0ted by
Log z; thus i
Logz=logr + m?\\ . . (I8)

The function is infinitely man éﬁ{}lued, since, for each
valuc of 2, 8 has an infinite n@mber of values, differing
from each other by multipleseaf 2. That branch of the
function for which — ﬂ',djﬁ =< o is called the principal
welue, and is denoted hy J],Efg z. When 8 =0, log z is the
ordinary Naperian logarithm of a positive real number. If
% passes round thg<origi.n in the positive direction, the
value of Log z ingreases by 2mi; while if z passes round the
origin in the ;&ativ& direction the value of the function
decreascs by\2ni. The origin is therefore said to be a
branch poig#’of the fanction.

¢ \u
Egagiple 1.—Show that

O\ (i} Logz, + Logz, == log (#:%) + 2,
N {ii) Logz, — kogz, = log (z,/7:) + 20w,
\\ whore m and n are integers or zero.
’ If'w-—--e",]w|:e”andampw:y,soths_mt
Log w == log e* + iy -+ 2nmi =2 4+ + Dnart.
This :
Log ¢* — 2 4 2umi, where n is zero or an integer. (19)
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Zeros and Infinities—Since log 7 is infinite when r is zero
or infinite, Log 2 has infinities at the origin and at infinity.
Log z is only zero when log r and  are both zero , . that is,
log z = 0 when z = 1.

Expansion in Series of log (1 + z).—1f z = ref?,
log (1 4+ 2) =log (1 + 7 cas 8 + irsin )

_ B | gl frsinﬁ'*)'
= }log (1 +2r cos 8+ 12) -4 4 tan (——-——-—1 Troso)

If 0 < r < 1, the inverse tangent lies between T%‘ﬁ' and
3, as its cosine has the sign of (1 + » cos ), which is then
always positive. (Y

Now, in Chapter XIX; § 3, Example $(puit — + for r;
thus, if | | <1,

. - ")\\'; P
3log (1l + 2r cos 0 + %) = z,(\_\ et - COSInG,
¢ ?lm!'x
and e
T ‘-:j_n 9 ,M’:"&CD - I
tan—Y| —_ T T __$— o™y .
" (1 + 7 co,g}?)., ﬂg( L o «in né

Y

chce,if!z[ < T

{‘:\n ™ ..

log {1 “i*\&["—‘ Z(-— I}t b {cos nf L i sin né),
N =1

. ne -
or 10g\(l,x+z}'=z——2+§'-—.... . - (20)

Lg;,(z@f_]g‘mm (20} it follows that

N : ‘
X £{; log (1 -+ z)} =1 . . @
...\."o =0
\\ * Now let p be a fixed nuinber, and let z and » be variable
quantities such that, when z — 0, vz - pand | v] —>00;
then, as in Chapter XVIT, § 6, it follows that

Lolgtmy—p . . (22

=0
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Abel’s Theorem.—1f 8(z) iz the sum of the series Za,z"
whose radius of convergence is R, and if the series con- -
verges at o point z, on the eircle of convergence,

L 86) = 8o,

2—r2Zy

where z —> 2z, along a radius. It is assumed that the co-

efficients a,, are all real. A\
_ Let z=r{cos 8 + isin ), 2z, = R {cos 8; 4 ¢ sin 90),,
then 8{z) = Ulr, 6) - iV(r, 6, O3

where Ufr, 8) = Za, cosnfr, Vir, ) = Z’aﬂsmnﬂr"
and, if z lies on the radius through z,,
Ulr, 8, = Za, cos aby 1, V{r, 8;) =), sin ndy ™.

The series Ulr, 8,), V{7, 6o), reg&rd as power geries in
r, are convergent for — R < k < R. Hence (Ch. XIX,
§ 4}, when » — R, A

LN
Y

Ulr, 8,) — Ulry, @t,:;,?:‘V(r, By) — Vi{re 8y),

~

and, consequently,

Utr, 6o + 30 B) — Ulra, Bo) + iVire, Bo)-
That is, whcn z S« %o along a radius,
S(z) = 8fz,).

'\ 3

E’xamﬂe 3. Show that the expansmn
‘\'\ log(1+z)—z— —{—3

.«.\i;:.vahd at all points of the circle of convergence lz]l=1
woxcept the point — 1.
) On the dircle z — e, and the series is equal to U + 4V,

whers

g ' 34 cos n(f 4 )
U:cosﬂ_(0229+0033 —-‘.-Z—E -
i in 30 sm%(9+ﬂ'}
VosingSEL T -3 S

2 3
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Now (Ch. XVIII, § 5, Exeraples 1, 2) those series are con-
vergent if — = < & < ». Thus tho given sories is convergent,
and the result follows by Abel’s ‘Theorem.

Ezxample 3.—Show that the expansion

H 1 4+ 2z _ At
is valid at all puinté of the cirele |2| =1 for .,v(tnfch
— &7 < ampz < }u. e\ et
Brample 4—Jf (2| =1, — I < amp z - -%;r,:j:rl;é,;'k the
points P(z), A{— 1), Q(iz), R(— iz) on a disgrafm, and show
that ¢
Ly )
amp (1—%7:) = RAQN\Y
. 7
Hence show thet, if — ir < @ q';}f{,v

o T rosf cos 3 cos SN
1) ~ == —_ .
( ) 4 l 3 + )5‘. - 7

i sin in 59
(i1} § log {sec § + tan Blt‘—_,\vi’g‘_g sim 36 | sin 58 L

1 3 73
Ezxample 5.—The Inﬁvei’ﬁgvTangent. Show that

1 -1z

where m is an_integer or zero,
[Let 2= tan w = (efr _ e~ fifee 4 et .
e Then et = (1 4 4z)}f{1 — iz}.] -

£
o W/

’&N; §9. The Generalised Power

».:‘;\ In Chapter XVII, § 5, the function a®, where @ is real

w\s"\;' and positive and w is real, was defined by the equation

\/ a® = gTloga,
The funetion so defined has only one value, which is
real and positive. We are now in a position to give a

definition of the fanction in which all.restrictions have been
removed.

L >
o\‘,o
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If ¢ and z are any numbers, real or complex, o is defined
by the cquation
af == pr Loga . sz (log a+2mm'), . .23

where m Is an integer or zero.

If z is an integer, the definition gives one value of the
fanetion only.

If z = pjg, where p and g are integers with no common’

: - g g . . N
factor, and ¢ is positive, the definition gives ¢ dlsthct”.
values of the function. The reader should verify that
this is in agreement with the results of Chapter XTV‘ §7.

If ¢ is irrational or complex, the definitiop’/ives an
mnflnitc number of values of the function, T.lm} value for
which m = 0 iz called the principal value.

From (23) and (19) it follows that 0/

Loga* = zLoga = 2 { loga} 2mmi), .o(24)

where m is an integer or zero. A
It is now possible to gnre *Demowre $ Theorem in its
most general form.

Demoivre's Theorem —Ho2 and v are any numbers, real
or complex, and m iz #ZNinteger or zero,

o\ o
cos y(K% 2mm) + € gin v{z 4+ 2mr)

Is & valus of (gds 2 + ¢ sin z). 1f v is irrational or complex
this gives an Cinfinite number of values of the function.

For '“

A feow & + i sin 2y = (), by (17)

A\ — eloglenn(in), by (23)

3 AN — evs‘tz+ Emn), by (19},

¢

AN
~Mrom which the theorem follows. If v is integral or rational
this agrees with the theorem, as stated in Chapter X1V, § 6.
If » is irrational or complex (cos z + i sin 2)¥ has an infinite
number of values. o

CoroLLARY 1.—cos v(z 4+ 2mwm) — isin v(z -+ 2mm) is one
_value of (cos z - isin z).

7
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COROLLARY 2.— z = #{cos # |- isin 8), aud if » is any
number, real or complex,

2 = ¢r 187 {eos n(8 4 2mm) 4 ¢ sin n(f 4 2ma)},
where m is integral or zero.

Ezxample 1.—Show that eze: is one value of {enh2e, QO
The Bxponential Limit—If z and » are variable npzﬁiﬁe\rs,
real or complex, and if p is a fixed number, rexl or éomplex, .

such that, when z — ¢, v — 4, and | v | —>gee,” and if
(1 4+ 2)* has its principal value D

» %4

o\
£(1+z)”=eﬂ N L @)

¥

2= 0 ,‘t\\"

For (1 -4 z)* = ¢ log (42}, andz\b‘, (22), when z—0,
viog (1 + 2} — 4. W

1

Bzample 8.—8how that, sz“; tkw, where
k=o5\E1, Lo ..,

" =)
A _1 2o
’S'Q}hz o z+ 2122 e g2’
¢ N =

[The proofﬂohixa.mple 6, § 2, applies here also.]

A%/ :
/>y~ §10. The Hypergeometric Funetion

)Eg?/applying the test ratio it can be seen that the hyper-
M.g@})metric series Fa, B; v z) is absolutely convergent for

."\\;} z| <1, evenif g, 8, y and z are complex. When |z[ =1
»\\/ the convergence can be investigated by means of the
N/ following extension of the theorem of Chapter XVIII, § 4.

TarorEm.—If
o 2 F N2 L L (- w)
"B FLETY . BTy
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where £ is not a negative integer then, for all values of #,

|t | < omg=ap

A being a ({positive) constant independent of n, and
R(B — 2} denoting the real part of § — «.

The proofs of the three lemmas of Chapter XVIIL, § 4,
hold when x and B are complex; the theorem can héy
deduced, as was done there, from Lemma ITT. A N

On applying the theorem to the hypergeometric series,
we find that, if R{y—a—p8)>>0, it converges absdlutely
when {z{ = 1; while, if &, 8 and y are real, a{ld

—l<y—~a—B =0,
it converges conditionally for |z | =)/ provided that
z = L AV

Evample 1—~Tew Brwomrar, TamoRem. If |2] < 1, and
if (1 + z)m, where z and m are reglior tomplex, has it principal
value, show that N\ :

m{ o :'1}

(14 z)m =1 +-T—iz‘+—-,—j?7——-z3
4 — —2
" -+ ni(w‘_lg)lﬂ%__)zs o
s\

Investigate theyalidity of the expansion when |z | = 1.

[The proof githd theorem of Chapter XVITI, § 7, holds for
eomplex series\yand, consequently, the proof of the binomial
theorewn givén' in the example in that section holds when
2 and myare ‘complex. From the theorem given above it can
bo seany fhat, when |z |—1, the series converges a_&bsolutely if
RimIo>Ar; while, if m is reel and — 1 <m = 0, it converges
({0}1{,1 1onally for |z} = 1 unless when z = — L.]

N :E’mample 2.—8how that the following expansions

3
;

{i) {2 con {36 — kn)}™ cos (tmf — mbx}
= 1+%cos g ™M= Doson ...,

21
{ii) {2 cos (48 — km)}™ sin (3md — mkx) | _
= %sin3+”j{in2—7—llsiﬂ23.+- NN
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{iti} {2 cos (48 — kw)}™ cos (x — Jind + nk )
n{m - 1]

coa (e — 6} + o%)

=cosoc—}—1— cos (o — 28) + .

where & is an integer, hold for (2k — 17 = 8 = (2k + 1) if
Rim) = @, and for (2k — 1}r < @ < {2E - 1)}or if 42 is real and
—l<m=0

N\
Erample 3.—1F m is real and greator than — 1, show that .
(i) {2cos (8 — km)}™ cos (x — m8 + mkn) AN
= cos a —r-—ncos(nc _ogy 4 — 1) (6 — )‘-F. o
11 21 '\’
where k is an integer, and (k — }}r < § < ( \\aﬂ"r,
() (2 cos 6)™ eos (Zmsw) = cos mb —f- — cos Z’m — 2j0
+ m{m s 1?\ws {m — 4}8 + .
21~
where s is an integer and (2s — %)‘-r ~& f < (22 + )m,
{iii) {(— 2 cos 8)™ cos {28 + l)mr} = cos mf
+ ;—n cos (m — 2}33;-}”1-””*21—1) cos {m — 40 £ . . .,
where (25 + 37 < B (2.9 + 4y,
(iv) (2cos )= 3111,\’(2%877) = sin mé + 13 c,m {m — 2)8
+”1’(i’7;1—”qm(m—4] f 4. .
where (,zsv %)w <8 <{2s + {)iw
(v) K{\Q'cos #)= sin {(2s + 1}??!77} = sin mo
.%“' + sm {m — 2)8 + =22 'm,(m — U sin {m — 4} - -

N\
N\ Wwhore {25 + -})w <8 < (28 -F -:_f)w-

,..\’ 7

\3
/

Example 4,—If m is real and ~ — 1, show that,
(i) (2 sin 8)™ cos {{2¢ + L)

mim — 1
—eosms———l-l cos (m — 2)¢ - o7 )

where 29n < § < (25 4 1},

eos (m — 40 — . . .,
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{ii} {(— 2sin 8™ cos {(29 4 J)mn)}
—1
== cogmtd — T—!ms (m — 2)8 4+ ?33(—-”%-'—)
where (28 + L)r < & < (28 + 2},
(iii) (2 sin 8)= sin {(28 + Hmad

cosfm — 480 — . . .,

= sin mi —- ?! gin {m — 2)§ + ?Mlmzi‘_l) sin(m — 48 — . . .,
where 2¢7 < § < (28 + 1)m, Ko
(iv) {— 2sin &)™ sin {{2s + Lymn) N ©
. mo. el —~ 1) .,
= sin mf - 1180 (2 — 2)8 + ——7—sin (m — 4—)9(’~§ “ s
where (25 + I)n < § < (25 + 2)=. '\"\.“

§11. Infinite Products\) '

As the exponential function is copfitious for complex
valves of the argument, it follows; gs\:in the theorem of § 3,
that the infiuite product I7f, is c@p’v‘ergcnt if, and only i,
the series X log f, is convergent. :

Infinite Product for sin z.~Ifm is & positive integer, such
that | 2 | < mam, and if R,

A
Tt follows that .‘lsh\e"product
..ﬁ:: it 2y
o ? n (1 N @)
:o\,,o ’-=1
§"\.:' [os] 42 ]
%E{@J‘I{Trgcnt if the series z log (1 - };@) is convergent.

a3 —
{The convergence of the séries can he established as m § 3,.
N BExample 9. Since m can always be chosen so that
" |2} < mw, the product converges for all values of z.
Now, if |z | < mn, each of the series

1 G o 1¢ 2\ m+1,m+2
r —_—— Y = =) ,r=m, , PR
(1= ) - S U

riq? ria®
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is abaolutely convergent, and the series

§ { — log (l — %E)}

Lk

is also convergent. Hence, by the theorem of Chapteps,
XVIIL, § 7, the series :

N

w " f:\»\
3 tog (1 - ) o
og — 3% N\
= 22 "\
t=m ™\
> ‘0
X .. ‘%%
can be rearranged in powers of z, giving a-deries z B2
v’ "= 1

which iy absolutely convergent for D¢ | <mw. By a
further application of the theoremygince the exponential
series converges for all values of'ilt{-s argument, it follows

that the product O
R\ S
P 2 2 B
]—]- ] LN —e A= 1
ST
¥ oom .
Q @

~\ . 5
can be expressed 85 a series E C,2* which converges
™

. a0
absolutely fox |z | << mm. Thus, on multiplying by the
remainingfaciors, we find that the given product can be
expresg{@;aa a series in the form
\§\1 s 2 w
,Q\ -4 n (I - 1‘—%1._.2) = z Dn22ﬂ+1,

al r=1 n=10

L the series converging absolutely for |z | < ma.
V Now, when z is real, we know that the product is equal
to sinz, Also, when z is real, sinz can be expanded
uniquely [Ch. XVI, (3)] in the series '

. B 2
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which converges for all values of 2. Hence

D, == (— 1jn/(2n + 1) !
and, conscquent-ly, if | z| < mm,

=% zs

el A
or, by formula (14), D

A

o 2 \ \
gin z = zn (1 — i—) . N (26)
r=1 '\ ’\‘“

Now, no matter what value z may have,)an m can be
found such that |z | << mw. Thus fm@ula (26) holds for
all values of 2.

Alternative Proof —Formulia (28 ﬁt&y also be established.
by means of Tannery’s Theorem,for products (§ -3}, the
proat of which is still valid When “the factors of the product
are complex. The theoreu:c 1% applied to the formula

’ﬁwl

2 2
smzv-nrin n(l —sm"—/sm 2%)

If n is tdkcft\hs large that 2% > | z|, it follows from § 7,
Example 5,that

N | = 5 2n
Y
o\\Heﬁce, with the aid of the inequality (mee § 2)
) n T
j\a s 2n n'
we find that
2 § . 1w
L L. i M .
sin m / gin o = &

where M, = S



e
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But the sories IM, is convergent: hence Tannery’s
Theorem iz applicable.

§ 12, Applications of Dirichlet’s Integrals

Dirichlet’s Integrals * are of fundamenial Importance, i\
the theory of Fourier Series. They may also be emplayed

to evaluate varions trigonometrie serics. N\
Definition—A funection f(x) is said to satizly Dirichlet’s
Conditions in a given interval if |\

(i} the funection is continucus at all Huint-:‘i of the .
interval, excopt possibly at a finite numpdc 6f points at
which it possesses finite discontinuitics, ind

(i) the function has only a finitesimber of turning
points in the interval. O

Properties of the I-nteg-mls.—&f“f{tn} satisfics Dirichlet’s
Conditions in the intervals of iffagration,

L@ sioiza =0, . . @)
Lt cosmeaz—o0, . . . (29
Wm0 )
and A\
[; jaf(a:) I e — 1o f(0 1), .29
p ¥/ s @€

wheteiin (20), 0 < @ and f(0 1) is the Limit of () when
#>0 through positive values.

A\ "The integrals in (27), (28) and (29) are Dirichlet's Integrals.
() These formule are valid even when f(z) is a complex

"\
\ ;

function of z, as they hold for the real and imagivary parts
of f(x) separately.

* Discussiong of the properties of Dirichlet's Tntegrals are to
be found in many text-books; emong others, Gibson, BElementary

Treatise on the Coleulns, Chapter XXTI, and MacRobert, Spherical
Harmonics, Chapter I.
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Applications to T'rigonometric Series—The identity

sin {m + 30

sin 18

e
z cos (7 -+ x)8 = cos {uf)
n=—m
where e is a positive integer and z is any number, real or
complex, leads, on integration, fo the equation

z sin (n 4 2)8 _ r f  sin (m + 1)6

Z Ta =1 cos{x26)

n gin 12:9 @ ‘";
0« 6 < 27, the integral on the right is of the f{)mﬁ (29),
~and gives, when m — o0, ,\

o
gin (n - «)@ .
_.__...—J = 3 b, . . 30
z 7+ o xﬂ:\\" (30)

A== &

Kzomple 1.—Show that PN

=]
sin 7 f T 88 a
=1 ol ad .
" [Make & — 0 in (30).]
Agaiu, the Idf‘nt].t_\,
m «\

EKW'—’_ @)f = sin (ot&)

leads to tl‘le\t;quation
i P \J o LIS 1
%il.ACOs (n + a)f Ej‘ s (uf) = 8 sin{m -+ 2}9d9.
a1

in {m - $)6

sin 34

A T o sin 18 g

~3‘f the L.H.8. is written In the form

N>y .
\J (1« 20 ) o cos (1 + )0
1&_20{2_%2‘[—2 nta
n=1 =

where o is not an integer, it follows from § 7, Example 17
and (20) that

Z cos (n - o) oot (wm), 0 <|8]<2m (8D)

[l A
n=-—
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Example 2.~—Show that, if « is not an intoger and 0 <8 <2,
o

1 .
i Hniail — e
() z % -+ 056( ¥ sin (ogor) A
n=—w0
- 1
ii Hnifi — il AT + 1 =)l i\
) z nt o’ K s.in(aca-r}g«rr e,
e . \
L ew 0S (1 + ge _ N
(i) > = o (g jeon (o 4 (8, \uw},
f=-—on \

@ +57>
: sin{n + 88 = N\
{iv) z e = (Dm)sm {om-:\:‘l; {f — a)b}
a=—0 :
Ezample 3.—Show that, if « + 0, 13 ,%}5’< 2n,
o N,

) z nsinnd _ #siahfr — )

net 4 g2 A 2einh (mx)

3

n=1 PR
x s:omﬂ = cosh {7 —
(11) + z 31.*‘ + 2" Zsinh { mc)

[Tn Example 2, gq\put B =0, « = +ir, adding and sub-
‘tracting the equatiohs so obtained.]

Ezample 4, \If « is not an integer, and 0 < § < 2n, show

that O
:l
- Fre:) .
in+ ) kil LA
), ‘Z (n—'— (n & oy #in? (o )+sin(our} ’
¢ \ ===
{11) z e
o E n=-—oo
z\~l 2 A - e 38
A = " €Ot (om) ~ il — )} i 6,

{iii) z co{ﬂn(”f}-"i;)f)&

_ ]:17 eot {ux) cos {aw + (f — a}f})
#in (a"ﬂ) + (m — 6} sin fur + (B — @)}’
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(iv) 2 S“(‘ﬂ("'f;)f”

==

- ™ eot (wr) sin {or + (8§ — ajd)
din (om} {m — 8) cos {ar + (B - x)f3d’

Example 6—If 0 £ 6 = 27, show that

egint T & \ \

2 G AR T A" @ fem T em o

=0 ©x {etftn-8) gin (am) — ei¥n- o) san .08”)},
i cos né - Q\
fii) _Z n + a)ffn + B) (o — B)sm () sm{,sw)

X {08 (7 - 8)8 . sin: {am) — cogfw- 8)x . sin (A},

“0

- sin nf
R Y ey oy B i (e o (57
B » fsin (7 — 6)B. .sm{otrr) gin (7 ~ 8o . sin {fx)],

R

g ¢
o

- - Y GOS nB o
(WJ. z {n -+ w)‘"‘—}y‘ cosh (2my) — cos (27%)
;< {cos (’B‘m}mh (2n — 8)y - cos (Zm — 8= . sinh (8y))},

- ‘i\‘/_;;am né T
M + )2 + y = Gosh {2my) — cos (2x%)

§"‘Z“{°:m {27 — B} . siuh (fy) — sin {px) sinh (27 — 8)y].

(v)

N\
,YE:campEe 6.—Show that, if 0 < # < 2=,
N
\.J
XN

) zsm(x—}—n)ﬂ

— 1)n

1 ¢rsin (v — §)¢ -
o d”mm,‘zﬁ
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(i) z cos (x4 n)H

x4 n
nuo=d
_lyimeos{e — 1o ; (-~ 1)
_.QL—-—qmla af 4 cos { ?)Z,c—f—'n'
=0
[Hardy’:l\
EXAMPLES XX “\\\
N
1. Show that, if ¢ > 0, A }'
oo \ 3
1 1 1 2
I —et” 7727 z 4!1-211:3\<§r§,
=1 \i\/
Deduce that \
& 1 1 et elt _’:’2\ @ tan-1idE
-{D (t—ﬂ_‘ﬂ_g_t) {{”& jg gt . 1"
LomE
2, 1If f(:}:)‘:x—rﬁ&?s—lhli'{'-""

show that, if 0 < z < 1, \t:’;
{1} fle) + f(1 \3}9) =37 —logxz.log (I — a),
(i) f(-- 2 w{)‘( ) = — & flog {! 4 2N,

3. Show th%&% p is not Integral,

v‘m’ 1
“‘gfnpﬂ:z . Uw(ﬂ Tptara --P)'
'\

\it\%rove that
"\ o 21'2
\}“:X z 1 . gsinh —= "
(@ + mal £ g2

Q\\/ reT 4 cosh Qﬂ i
*

5. Bhow that

z {(#n = 1)== ; z“‘“‘*n} 3

x=] 2
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6 If nisan odd positive integer, show that
iy
R N
where m = l{n — 1), and deduce that
[rs) o
smhxzmn (l—l—m). O\
_ k=l N
17 AR ! b
]:109321(1 +ﬁ) — (1 —?—%) } log = + z v(
i:==1
whera N\
2 2 . N
vy = lag [1 4 _Z".C08 7‘;:; 5| < log 1+4k2}
sin n 5 x:\
Bt = | [N
| no 4D
The result is now obtained by agpfymg Tannery’s Theorem. :!
7. Prove that .,';;‘“
o ey

2 1 _
En(?.@"r"l}s U(1+ ”—.1)_2'
&, Discuss the\oducts

(i} (2 —suyfi'}(l—Zsm:)(l—3sing) C e

i {Qm 3 + 1}(sin # + 2){sin & +- 3} .
\K{GOS & 1+ 1)cos 8 + 2)(cos 8 + 8) .

ﬁor\alues of 8 such that — 47 < 8 < %rr

NS Ans, (i} diverges if § = 0, converges to 1 if 8 = 0, diverges

‘1;0 zero if > O; (i)} diverges if # > }w, converges to 1 if
= ta, diverges to zero if 8 < i=.

9, 8Bhow that

. 1 — 1) w? r?
() gl(_%l_—w=§g, (ii) z wn — 1) 3_2(1~A-)

Zn — 11 12/°
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10. Prova that
htatEt 4.

I1. Show that

XA LEEED)

sin ™ = mx rr{(l — ;—i)e:}

n=—00
" 12. Prove that

. x

— = 2 =

cosx —eosy = Tsin (5y}<l 7

)

7

 {
2 N
A
s

D

vg

[,

S

&

N\
)

x n = y]*}Q\\ (

13. Show that

(-5
ﬂ
n=1 \{ji
14. Show that N

LN

\V
AW _sinme
T mlr £ LY

3 T .40 2
L4 sing = jr + 202 18 N o 2y ]2{1 - —’%ﬁ” } '

42p2

4

Sm;;;yj‘},(l g)n{(l_l_

’\
15. Prove tha,t (‘ )

I

16. Pg'(gve that, if @ iz not an integer,

N
Q

2
EN
S

; R=—05

17. Prove that

1 — coa 2uac

'rl- {1 _ _ cos 2mr — cos 2qa
(n - GJQI '

Y _ Y _)
— .s) (1 nw <+ x f

2ra — y)"‘}]'

PO

].

2 2
cos ($wein f) = lrcos? g (] +GOS 6)(1 +(3_0_S_£!') e

18, Show that
(1 —2)(1 + 3o)(I — Ja)(I + 1z} .

2

.4

4.6

.= 4/ 2. sin de(] — @)
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19. Show that

e

. o .
{i} cos—é— 4+ +3sin 6

—oea(=H+ 0 -5 ()

e it I . mE. . 7N
(11} cos T 4 :/_3 BITL 5 \'\\“\

~asa(1-3) (P-4 00

20. Show that ".: )

13 1
n+1+n—|—2

as n -~ 0, and henece show that

LA{0-7m)0 T (1)) -

+ ...+

T O3
$

21. From the identity ,'s:'.;‘ N .
z -B)z—e) , z—Ck —a) (z—a)lz—b
(@ ub)(a—c)+(b<—c}(b @ T e—ale—-0
deduce the identities)
(i B0 Spsin (¢ — )
ain {cx.——-.ﬁ) sin (& — ¥)
AN sin {8 — y)sin {§ — a) g —
o tEEamE—a P
'\‘M\;N T sin (8 — a)sin (0 — B) 28—y =1,

3

cos 2(8 — «)

;\\ sin (y — «)sin (y — B)
LSt sin (0 — B sin( — ¥} g
"\' (i) S (% = B) s (x — 7) sin 2(8 — o}

sin (f — y)sin (8 —a) . -
= e (=) gin 2;3) 8)
gsin{(§ —e)ysin(® —B) o a0 ) =0,
+Sin(y_g(]3in()’_'s}81n ( "

[Put Z = 35’59’ @ = egx, b = gaiﬁ, = g.]

+
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22. Show that the serieg
(=]
1
Z 2NN
=0
converges absolutoly if fz] = 1.

, N
23. Show that the radiusg of vonvorgence of the sapipg
Va2t g0 <
is zero, )\
1 L 4 Q\",
24, Show that, of the two serios AN
o = [ .“~: 3 z]
! ! z L i LW b
z log (I + n)’ Z log [(}"‘S ntt ﬂJ t
A== =—u0 N\
where z is not & resi Integer, the formerys divergont, and the
latter absolut-aly convergent. L
25. Prove that, if ¢ + kw, whqvé:}= &+, L2 -
{i} €08 8 cos 8 -L oy # co8 2L cost 9 eos 30 T =2 0,
(i) cos gsin @ T cos? 85088+ cog g sim 38 L. . —cotd,
k¢ ’0‘

26. Prove that the infinitd serios

os 2y cos 3 cos 4r
cosm—}-?r%—-"f-{——c-!ggfﬁ- 023 + ...

1 {‘ﬁz;l values of v, and find jts sum. Deduce by

converges for all :
Integration th\k{ﬁh of the series

. \
e . Z Sin, By
K 7, @n-1"
= :w: ﬂ=1

Ans,\‘:, teosa — 2)/(5 — 4 Cosx}; 2 tan- (3 tan, ir) — w
O

T 1 O s the oTigin of co-ordinates and OP i the vector
Q a6 1. betsa,

() "where ¢ and » are real, show that when g varies the locus of

P is & circle with the origin as centre and radius of length
Vi{a? + 2ab cog o + &7).

28, Express (o — wef iz oL ¥e'®) in tha form @ + 7h, where
& and b are reg|.

Ans, e #° — i2xy sin Ol - 2y cos 8 + 4.
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929, Solve completely the équation
w4 an e =0,
where i is a positive integer.

Ana, . x:aexpi(ﬂ-&—%‘: lw),
where E=0,1,2 ...,.n—1L
30. Tf u = e{w cos y — y siny), v = €& siny + vy cosy) "
express 4 + iv as a function of =z. A
Ans, zet. \ N/
91, If 1w — e*—v cos{w -+ y) + €=+ cos (& — yh W
and v=¢-vsin (v +y) —evsin e — ¥ )
show that w + v = 2 eos 7. LV

22, If ¢ = ¢” (sin © cos y cosh y — €8 X ain, y’siﬁh %),
and u = e{ain @ sin y cosh y + cos mzw sinh ¥),
show that w + iv = e sind v

23, 1f @« = 4y =sin (u# + ), Shcnv\":ti’{ﬂt the curves

W = const»a.yja,:’y ; constant

X

are confocal central conics. 39

34. Show that N
2(1 — g)eosd> gt ei®
1 - 2w cog(28 -+ @ T 1 — xe? + 1 — ze-2t’

and deduce tha’o,\?ﬁ =] <1,

{1 — s)eoB @ _ . _
D sy o e S 2 cos 3¢ 4 xtcos B8 + . - -
1 - 3020 + % cos § @ ¢o _+ _

35,. &%A,, . .., A,are the vertices of a regular polygon
of ‘n{&iﬂes inscribed in f circle whose centre is O and radius ¢.
B/is'a point inside the ircle such that OF =d, [ AIO_P = 4.

_tBrove that
i~ n .-
4 : a* sin nd
N/ o - .
o z £ OPA, = tan™! e S dn
r=1

36. Show that

o0
1+ z {_(_'2_52: cos 2nf = cos (r cos §) cosh (7 sin 6}..

n=1
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37, 00w g e log cos {a | ), whera t, v, o and y oare
real, prove that
= }log {} {cosh 2y + cos 2000,
and that
Cosy  —smine _ S -
cosweoshy sinasinhy ViE (eosh 2y cos 2o}y N

38. Provo that, if n is 5 Positive integer,

% \“,\ -
s/
Ltam =TT — aa), A
r=1 ~s\\ 24
where o, = exp (_2:-; lm') ; then show't&}{f@\v

\\\l

"
{i} z 2, =0, if s isan int-e%q}',’not & muliiple of n,
=1 o

<\
n AN
_ .‘“ > . .
(i) Zur“ = (— I}*Q&;f % is any integer.
r=1

Al
NN

N
TN

39. If 1 — o 4a%'= (1 — gyl — %=12),
Prove that ~
o N\
— ’—m%\j_—cf-—m” = log {1 — yx 4 x2).
LEN) :

Deduce blié,,bxpansion. of (=
and pzﬁoyﬁ’s&i}at ’

+ o) in powers of (a + «-1),

AN

2cos ?‘3@&:"{2 cos #)n
oY

—n{2 oos fyr-1 4 "R — 3)

a7 {2ens et —
N/

“ﬁe@ng the general term :

and, in the case of » odd, the last

N :
\N" i T —~9
<>, Ans. (~1y %LM_;L”M(Q cos 4yt

r!
#—1
% 2n cos 0,

(— 1)
40. What iy the principal value of log (1 + ¢4/3) ¢
Ans. log 2 + 4.
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41. T - = < # < =, show that
log (I 4+ cos & 4 ¢ sin §) = log {2 cos £8) +- 38,

42, I w = z'%» Logz, and if, inftially, z = 1, 242 = I and
Log # = 2«1, find the value of w when z returns to the point 1
after describing the cirele | 2 | = 1 in the positive direction.

Ans, — 4=,
+ 2

43. lfw—log( ) andlf-w-Owhemz—O,show‘

that w will be uniform if cross-cuts are taken along the z-Hxs

from — 1 to — o, and from -1 to 4 . Find the walte

of w for theva.lues 4+ —4 1 +4andl ~¢of 2. ¢ "«.

Ans, i}m, —idn, %Iog5+m({;an—1§+§n),§loga—e(t{n\ 3-+3w).
44. If r, o and @ are real,  positive, and {&/r)| < 1, show

that
log {#* — a” cos nd — ia* sin nd) x'\\"
n—1 \‘ %
z log{f—-—acos(&—]—-—-—}»msm(a-{— ”)}
5=0 . . .
45. ¥f tan @ = cos w tan 4, plv,)ve that
ab’~
— = — g
4 a“-—zﬂt gin Zne,
N\ Te=1

where ¢ = tan dw, ( g:f:‘w < gm
46. Find thegum of the series
nsin'et In®sin2e + Peinda +. . .,
where — I ‘<\ﬂ, < 1; and show that it iz & solution of the
equations )

\, sin @ = # 8in (.’L‘ + a)_
ﬁﬁ"stablish the identities
By
:Ibé n (l - 29%-1 cos 2z | qm_a)
} n=1 w
= log n {1 — gin-lgm)(l — gin-lg-%e)}
n=1

a0
- _ g g cos 2nx,
Z o 1 -t

fnaal
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where | ¢ | << 1; and show that these products and series are
all absolutely convergent.

48. Express in the form U + iV,
. 1 1 iz I
=1 L
() tan {2-5 8 (1 - z;a:) J
(1i} e+ i) Log (x + ) ~
where %, ¥, a, b are sll real.
Am.ﬁ)m(menwwkgw2+w)—mmnﬂww*wm
X {eos ¢ + isin ¢), where d — 36 logr (m® 4 42} 4 {tan "My /x)
+ mnl, and m is zero or an even integer, O

N/
49. I w + iv = tan~* (z + 4y), N
where u, v, «, y are real, prove that O
— jtan- %° »— 1Oy e
% = 4 tan e el a_%og{lﬂy)i-'_!—x"*'
50, If 2+ iy = tan (y/Par),
where =z, y, u, v are real, show tha,t.“,\
” = sin 2w 1;; 2 . sinh 2o
" eosh 2v = cos 2wy ¥y = cosh 2r — cos o'
‘Q '0‘
tan 2o — 2z 3 tanh 2y — 2y

e U4 + g%
and then state the £ eneral value of tan~! (z -+ dy).

51. If tenh y ?%f&n z, and if, for small values of # and ¥
PSS F 1 o oot et £, L
show that )\ )

N =Y — ey g eyt L.
52. N1 £ p £ 1, show that
_{\cosh pz =1 _ Z2cospr 2005 2pn
5”\; zsinhz 2E Lt 22 + dpz

,E@\n is o positive integer,

\

~:’l‘ o2 2n 41 ( Pz in41
3 1 - 1 (R b
Rl Fmr) (1 1) )

QP

I liA,

y i LR ] z 31‘11—1}
0+ m3) ™ - (- 52)™)
i .
=§+ I . A 'r?+ i B'_ ra l
1 tz—e(2n+1)ta.n%+l z—l—a(Zn—f—l)tanzn_]_lJ
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Here A = 1 while A, and B, are both equsl to

’ 2n-1 . . ra 2n 4l
( zn_'_l—l—apaam2 +1) 4+ (0032 11 tp31n—2n+1)
2003—2—?‘flcosi

2nt1 241

Thus the L.H.5., divided by z, is equal to

n ) ¢ 3
2 A
- < \“ p ;
2T Y U, +~0%
. « \J
whiere 4, = (— 1} X ("k
I T 2kl T . .2t /9 m+l
3 —_ IR~ AL
[\c_ogz -1-1,;0:;1112 +1) + (005213—1—1 ”3"35}"3}2%-{-1
. ¥a
2 2 2 2
z% cos® 5 +1+(2n—|—1) 2in %}1
If » Is fixed and n — <o, \\
exp (iprn) + oxp(— %}D?"ﬂ) . 2 cos pra
Uy — (— l) T + r*gr‘l ’,:’;’ ( l) e _[_,rs [
Again, if m is a positive mtager such that = > 4|z |, and
ez m, ,~;.
2
l 22 | A Ig ls'

The reé\lt then follows by means of Tannery’s Theorem.]

5\3§Show that,if —» 2ae £ m
ot

~\’ N eos az e GDS na
O et —|—222( ) o
v' n=1
54. TF — 1 < A < 1, show that
, 2nmein nm\

. w
sin A (—1
Erria) T
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55, If

"+ e e )
S = PRI + at z {(n el et (n e gt

apply the expansion

;= A
7 ¢oth #z =E+22—Tj AL
n=1 &\
to prove thut O ”
5 #8in 27 A -
£ "= Gosh Bra — cos e’ L
m—= oo >
56. Show that the Prineipal value of 4 m\’ﬁ
- b7. Show that, if | ten x| < 1, N
o o1 — %‘2\ i coa )
{i} cos ny = {cos x)"F(— 5 —2-—\, %; — tan x/,,
(ii} sinng =nshw(cosx)"-‘F(l€f, 1 -—-g; g; —tacnzx),
{iif) cos na (cos x) = F :& I+ n,- $; — tan? a:),
{iv) sinnz (cos 2 -—\n tacn xF(——%f"’ 1-L ’; g —tan? x)

{From Demoivre’s@heorem

cosm—%(éﬁsx—}—zsmx)"’ (COS’E-——'R.EIIICC)“
—§gcoas'r) {(l+e,tfm.r) + (2 — ¢ tan x)n],

Now expand/by the binomial theorem to get (i). For (i) use
the for

\S}nm-—-(cosm—}-zmnx)" (cosx—wm.{)"

,]?br (iil) and (1v) Pt — n for 5 in {1} and (ii).)

Y s 1 (L+2r =py 4 pz +pgt 4. .|

) show that PP T Py
4 (1)Po—pg+p.;——...=2§"cos}nrr,
{ii) @, Pyt ps—. .. = 9in sin {nar.

59, Bhow that, if fz] <1,
P+ 2 F 820 4 ges o= {1 — )2,
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and then sum the series

fi) 1 - 2rcos&+3r*cos28—}}4¢3cos38—[—. c ey
{ii) 2rsin § + 3rigin 20 4- 4 sin 38 + . . .,
(i) 8in @ + 2rsin 26 + 3r2sin30 + 4%am 46 £ . . .,

where — 1 < r < L.

Ans. {i) (!} — 2rcos f + r2cos 28)/(1 — 2rcos 8 1 r2)2,
(i) (2rsin ¢ — ¥ain 20}/(1 — 2r cos 8 4 #2)5,
(1) {1 — #?) sin 8/{1 — 2r cos 8 -+ r¥)%

60, iz, = cos—- + 1sm2 , show that \”/
T[ 2= —1 R4
et . O

6l. Ifz, = Cos go —i— @smg, showtha,t! \

X

N\ WY
|’Z—b'*
n = /

>
=1 .‘.,
N

7

A\ N

62, Show that, 1f o 18 nelbher zero nor &n integral multiple
of 27?, R

[=#] .
coshz — ca&l&‘ : x?
T NG IT {1+(2nw+u)*}‘
L
a3. ProV{?mtr’gjgﬁ

Q;t./‘g) (1 4 )(1 +25ﬂ2) et
AP0+ (0 a?s)(lf-aﬁ)'“ o

\"*64 Show that
257 2x®
1+1+x’+2”+x*+3’—{—x3+' st

L a1 ) (1 48)

.(1 +a:3)(l.+:-;—:) (1+'1;—:) o
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65. Show that

)
(i) cosz—n{ (Zn—l)’ i)

{ii) sinh 2z = 2 ﬁ ( + o ,), LN\

[cr. xx

\
o 22 1 4 {.l ’
(111) cosh 2 n (2_?3“——,1}3_2j . :\""
n=1 ~ ¢
66, Prove that ”"S ‘3

8in 7z = nz nr {(I{—E—).\@V
\

67, Show that

4
, @
n L% cosh (wa:v%} — cog (‘I‘J‘Tvz)
+ ﬂ") ) 2wigt
r=1 {
\’&«
88, Show that & N
n— N
cosz = /{ ‘i 511'12-—/31112(2?‘ + l)nj

and deduce that \<\

\
_ 4
,w’c"“ TT { (2r I 1) = + 1)= =Tk
x\«/
69. I@\fﬁmu.la

! (80}, page 459, put 8 — » and deduce that, if
@ 13\:@} integral,

/\ o
N\ i 4 1 20
QD Saw = 5t Z (cap 2

“"\ n—1 ct—ﬂ.
Q»/



APPENDIX -

THE LENGTH oF 4 CIRCULAR ARC A
In Chapter I it was assumed that an are of a circle has' e
definite length, an assumpéion which requires justificabion.
A definition of the length of a P
circular are, based on the con- AN 3
geption of the length of a
straight line, will now be given.
In what follows it iz assumed
that the arc considered ig less
than a semi-circle. When once
the length of such an are has
been defined, the lengths of
larger arcs can be obtained by o
acldition. o™
Let LM (Fig. 1) be an arowof
a cirelo whose centre is Oy 'ehd
let the tangents at L and Mameet
in W, Let OW cut the, chord

LM and the arc LM;&?\ “and V Fic. 1.
respectively. Thef\/

N o

W v — ow

and, consacﬁ}efitly,
~EW —LU OL —00_0V--0U_ v

'\\;.' LW - OL OL oV
N\ Uv |
.{f’.HOﬂCB LW — LU = 6? Lw H
' uy

and, similarly, WM — UM = o7 WM.

Thus, on adding, we have

(LW+WM)_LM5([%(LW+WM). . )

475



478 TRIGONOMETRY

Again, let N (Fig. 2) be any point on the are LM, and let
the tangent at N mest LW and WM in R and 8 rozpectively.
Then LN +NM > LM . . .(2)
and LR + RN + NS -+ 8M - LR + RS 4+ 8M

< LR ++ (BRW + W3) + SM,

=0 that LR + BN -- NS + 8M < LW - WM. . (BN

Next, lot AB {Fig. 3) be an arc of g circle, and let the tnngegts
at A and B meet in T. Tako n — | points K, e A
K., in order on the arc AB, and lot the tangents atb t{h@ pairs

glFfu. 2. ' Fra. 3.
ofppiﬁ%A,Kl; K. Kes .. K, ,BmeetinT, T, ...,
T,Q{’ss:pectively. Also let

s,\ . 8, = AR, + KK, +... + K, B,
:»\‘"ia.nd Ly = AT, + T,T, +. . . -+ T,B,

...\ W
4

AN

8, and X, being the sums of chords and tangonts Tespectively.

Then, if # be inereased by the insertion of additional points
K, on the arc AR, it i5 clear frorm (2) and ¢ 3) that 8, increases
and Z, decreascs 8s # increages. Also from Fig. 3 it is clear
that 8, < Z,, so that

AB <8, < Z, < AT 4 TE.
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Thus {Ch. XVIII, § 1, Theorem I}, since 8, increasea with
#n and
8, < AT + 1B,

8. tends to a definite limit as » - . Similarly (Ch. XVITT,
§ 1, Theorem IT), since X, decreases as n inereases and

Z, > AB,

Z, tends to a definite limit as % ~ oo,

Tf it be now further assumed that the greatest of the chords'
K, ; ¥, tends to zero as n - o, it can be shown that thess w0
limits are equal. « N

For, from (1}, : P

(Ky T, + T,EK) — Koy K, = MK, T, +LTK),

where A, — 0t when K, ;K,-> (. Let A be the) greatest . of
Ay Ags oo .y Ay then

(Ko, + TK,) — K, K, £ AT, + TK,).
Thus, on adding the eorresponding iﬁequa-lities for
r=1, 82,

o\ ay Thy

o

it is found that .
T, — 8, = a&> < NAT + TB).
But, when # - oo,. g\"‘-—;.o';- therefore
,zmx\ Z, — 8,0

Hence the limitk\of Z, and S, are identical, Denote thie
common limif by 1. -

It will nt{}it "be proved that the value of ! is the sams no
matter hgwythe points of division are selected, provided only
that tLé&%ength of the greatest chord tends to zero as » tends

o 1 ﬁ“ﬁﬂiy. . ]
\Blgt"a set of m points (of which some or all are different f:rom
thévn points) be taken on the arc AB, snd let §°,, and 2°, be
Sehe sums corresponding ta 8, and Z,. It is assurned that the
Jlength of the greatest chord tends to zero as m — o, so that
4’ and 3, tend to a common [imit I’. Let n and m be taken

8o large that
ol —e <8, < F, <l+t e
and Ve <8 < Zn <l +ie

where ¢ is an arbitrarily assigned i)oaitive quantity.



478 TRIGONOMETRY

Now, superimpose the one set of divisions of the are AB on
the other, and lot Sasam Tarm d6NOts the sum of the ch ords and
the sum of the tangents so obtained. Then

Lrode <8, Copm < opyp < 2 o] + le

and UV—le = B < Bny o Onem < & <l 4 de;

7
so that L —de <V + e N
and U — 3 <1+ fe Oy

Thus I — ¥ < eand [' — ] < e, and consequont{y‘\j}— {"is
numerically less than e. But ¢ can be chosen ag.gmall as we
please : therefore I and I’ are equal, ,%K 3

It follows that, no matter what points K '&, e Kooy
are taken on the ape AB, the sums §, ands\Zhtend to one de-
finite limit as # — o, provided only ths & greaiost of the
chords tends at the same time to zero, \’_ljhis limit is taken to
be the length of the arc AB, ¢ :

%7
L 4
o~
NO)
N
»
\
o\ ¢
‘\s\&
s\
Al
QN
A
ad
" Q\“
S



N g,

INDEX

Tur NUMBERS REFER To 1H1 PacEs

ABXL'3 inequality, 365.
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Alternating series, 367.

Are, length of a circular, 475.

Bixoyian theorsm, 375, 453.
Bounded sequences, 3446, 348,
Branech of a function, 440,
Branch peint, 444G, 447,

CireLe: of convergence, 438,
Circalar are, length of, 475.
Cirenlar fun(,tlo:ns, goeneralised,
4432
scries for, 443,
Cloged, intervals, 360, 392. 4
regions, $40. o\
Coofficients, Legendre, 382,40
Comparizon test, 352, ~
Complex scrice, 437,
Complex variable, Lup ek\bns of a,
439,
Conditional
368, 430.
Constant, Lu’ie;’s 357,
Cunt-irluit-" A,
of Hmithobu sequenee, 397.
of gemég, 392, 400, 440,
(o;?s\;geucc absoluto, 358, 430,
a8,
PN j;cirz?le of, 438,

I om\x soentce, 365,

o9 conditional, 365, 368, 430,

general principlo of, 349,
mterval of, 360,
of sequences, 345, 390, 397, 440.
of veries, 351, 391, 437, 440,
radius of, 360, 438.
wncondilional, 368,
uniform, 389, 590, 391,
347, 398, 403, 440.

306,

Coaine, generalised, 443, 443,
infinite product for, 435, 474,
Cotangent, expausion in serlaé\
of partial fractions, 423, 441?
-Crogg-cut, 440, 4
£ N4
DEMOIVEE'S theoremgdéd, 451,
Derangement of scpies,’368.
Difforential equa,;tro , linaar, 407,
Differentiation af sequenceb, 397.
Differentiatioh, of series, 395, 400,
Birichlet’s wli tions, 458,
Dhirichlefsdntegrals, 458.
Dirighléy's theorem, 368,
Doublgwories, 372.

S .
MEavarion, indicial, 410,
\WEuwler's constant,
Y| Expansions for sgin nd and coa nf,

357.

408, 412, 445, 472,
Lxpangions in series of partial
fractions, 423, 426, 427, 445,
446,
Exponcntial funetion, 371, 401,
441, 442, 452.

Fuxcriow, branch of a, 440,
continuous, 444,
oxponentisl, 371, 401, 441, 442,
452,
hypergeomotric, 361, 368, 452.
Himit of a, 440,
logarithmnie (se¢ wnder Logarith-
mie funetion).
many-valued, 430
monotonie, 356,
wniform, 439.
Functions, eircular, 442, 143,

hyperbolie, 443, 443.
Functions of a complex variable,
439,
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443, 443,

Geoneralised exponent;
the, 441, 442,

Genoralised hyperbalic funections,
442, 443,

Generalised logarithmic function,
the, 447, 448,

Generalised power, the, 450,

funections,

al funetion,

Harmorre series, the, 352, 357.

Hyperbolic functions, generalised,
442, 443,

Hypergeometric fanection,
361, 368, 452,

the,

IneENTITIES, 405,
Indieial equation, 4140,
Infinite products, 428, ¢55.
for the sine and cosine, 434,
435, 4386, 437, 435.
Tannery’s theorem for,
457,
Integral test, Maclaurin’s, 357,
Integrals, Dirichlet’s, 458,
Integration of sequances, 397. ]
Integration of series, 384, 40040
Interval of convergence, 36003
Intervals, closad, 360, 392, "%
open, 364, 4
Inverse sine, 402, 404, 8
Inverse tangent, 4( 1\} 4b4, 450

433,

~

LEGENDRE coeflicients, 382.

Length of a giveulsr are, 475.

Limit of a fudetion, 440,

Limits forlloparithmic and oXpo-

‘nertial funotions, 448, 452,

Lingaf differential cquation 8, 407,

Lo, %zjt’hmic function, the, 403,
'.‘%47, 448, 451,

Jseries for, 401, 403, 448, 449,

™ ‘Macmmm’s integral tegt, 357,
Many-valued functions, 439,

TRIGONOMETRY

OFEN intervals, 360,

Parmrrar, fractions, sories of, 423,
428, 427, b3, 446,

Partial remaindor, 331, 3906,

Power series, 360, 375, 390, 438,

Power, the genovalised, 150,

Principal valuo, 447, 451

Products, infinite {sec onddn
Lufinite producis). ¢\
{ N

7o \ I
Ranimrs of canvergenee, J§), 438,
Ratio test, the, 354. P
Remainder, partial, 351,33 06,

0
SEgUENCRY, houmded, 346, 348,
coutinuity ePimits of, 367,
convergence of, 343, 390, 397,
440775

differentiation and integration
WL BYT.
mdnotonic, 346, 945,
e B0iform convergence of,
397, 449,
Serfes, alternatin o, 367,
continuity of sim of, 392, 434,
440,
gonvergence of, 351, 437 (see
. also under Convergence).
der&ngement- of, 365,
differentiation of, 3495, 400,
double, 372,
for inversoe sine, 402, £04.
for iuverse tangent, 401, 404,
3

300,

for logarithimic function, 401,
403, 448, 449,

for sine and aogine, 443,

integration of, 304, 400.

multiplieation of, 370, 4349,

of complex tarms, 437,

of partial fractions, 423, 42,
427, 445, 446,

of positive terms, 352,

Monotonig funictions, 356,
sequcncoes, 346, 548,

M-test, Woeierstrass's, 398, 440,

Multiform functions, 439,

M ultiplication of serios, 370, 439,

Power, 360, 375, 309, 418,
Tepeated, 372,

substitution of & series in a, 37a.
the harmonie, 352, 357.
tniformly convergent, 341, 410,
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Bine, infinite products for, 434,
433, 438, 437, 453,
the generalised, 442, 443,
the inverse, 402, 404.
Single-valued functions, 439,
Substitulion of a power series in
a power series, 3735,

TanceeEXT, the inverse, 401, 404,
450
Tannery’s theorem, 420, 4486,
for products, 433, 457.
Test, comparison, 352, )
Maclaurin’s integral, 357.

rutio, 354,
Weierstrasa's M-, 598, 440.

xi

Theorerm, Abel's, 403, 449,
Demoivee’s, 444, 431.
Dirichlet’s, 368.

Tannety's, 420, 433, 444, 457.

UNcoNDIFION AL convergonce, 368.
Uniform convergence, 389, 440,
of sequences, 390, 397, 440,

of series, 391, 306, 398, 403,
440,
Uniform funetions, 439. o "\
VaruE, prineipal, 447, 451, \“}
¥ariable, complex, fuuct.Lona\of a,
439, 3

WEIERSTRASS'S M, te{}\éés 440,
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